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We address the following question: How redundant is the parameterisation of ReLU net-
works? Specifically, we consider transformations of the weight space which leave the func-
tion implemented by the network intact. Two such transformations are known for feed-
forward architectures: permutation of neurons within a layer, and positive scaling of all
incoming weights of a neuron coupled with inverse scaling of its outgoing weights. In this
work, we show for architectures with non-increasing widths that permutation and scaling
are in fact the only function-preserving weight transformations. For any eligible architec-
ture we give an explicit construction of a neural network such that any other network that
implements the same function can be obtained from the original one by the application of
permutations and rescaling. The proof relies on a geometric understanding of boundaries
between linear regions of ReLU networks, and we hope the developed mathematical tools
are of independent interest.

1 INTRODUCTION

Ever since its early successes, deep learning has been a puzzle for machine learning theorists. Mul-
tiple aspects of deep learning seem at first sight to contradict common sense: single-hidden-layer
networks suffice to approximate any continuous function (Cybenko, 1989; Hornik et al., 1989), yet in
practice deeper is better; the loss surface is highly non-convex, yet it can be minimised by first-order
methods; the capacity of the model class is immense, yet deep networks tend not to overfit (Zhang
et al., 2017).

Recent investigations into these and other questions have emphasised the role of over-
parameterisation, or highly redundant function representation. It is now known that over-
parameterised networks enjoy both easier training (Allen-Zhu et al., 2019; Du et al., 2019; Frankle
& Carbin, 2019), and better generalisation (Belkin et al., 2019; Neyshabur et al., 2019; Novak et al.,
2018). However, the specific mechanism by which over-parameterisation operates is still largely a
mystery.

In this work, we study one particular aspect of over-parameterisation, namely the ability of neural
networks to represent a target function in many different ways. In other words, we ask whether many
different parameter configurations can give rise to the same function. Such a notion of parameteri-
sation redundancy has so far remained unexplored, despite its potential connections to the structure
of the loss landscape, as well as to the literature on neural network capacity in general.

Specifically, we consider feed-forward ReLU networks, with weight matrices W1, . . . ,WL, and
biases b1, . . . ,bL,. We study parameter transformations which preserve the output behaviour of the
network h(z) = WLσ(WL−1σ(. . .W1z + b1 . . . ) + bL−1) + bL for all inputs z in some domain
Z. Two such transformations are known for feed-forward ReLU architectures:

1. Permutation of units (neurons) within a layer, i.e. for some permutation matrix P,
Wl ← PWl, bl ← Pbl, (1)

Wl+1 ←Wl+1P
−1. (2)

2. Positive scaling of all incoming weights of a unit coupled with inverse scaling of its out-
going weights. Applied to a whole layer, with potentially different scaling factors arranged
into a diagonal matrix M, this can be written as

Wl ←MWl, bl ←Mbl, (3)

Wl+1 ←Wl+1M
−1. (4)
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Our main theorem applies to architectures with non-increasing widths, and shows that there are
no other function-preserving parameter transformations besides permutation and scaling. Stated
formally:

Theorem 1. Consider a bounded open nonempty domain Z ⊆ Rd0 and any architecture
(d0, . . . , dL) with d0 ≥ d1 ≥ · · · ≥ dL−1 ≥ 2, dL = 1. For this architecture, there exists a
ReLU network hθ : Z → R, or equivalently a setting of the weights θ , (W1,b1, . . . ,WL,bL),
such that for any ‘general’ ReLU network hη : Z → R (with the same architecture) satisfying
hθ(z) = hη(z) for all z ∈ Z, there exist permutation matrices P1, . . .PL−1, and positive diagonal
matrices M1, . . . ,ML−1, such that

W1 = M1P1W
′
1, b1 = M1P1b

′
1,

Wl = MlPlW
′
lP
−1
l−1M

−1
l−1, bl = MlPlb

′
l, l ∈ {2, . . . , L− 1}, (5)

WL = W′
LP−1L−1M

−1
L−1, bL = b′L,

where η , (W′
1,b
′
1, . . . ,W

′
L,b

′
L) are the parameters of hη .

In the above, ‘general’ networks is a class of networks meant to exclude degenerate cases. We give a
more precise definition in Section 3; for now it suffices to note that almost all networks are general.

The proof of the result relies on a geometric understanding of prediction surfaces of ReLU networks.
These surfaces are piece-wise linear functions, with non-differentiabilities or ‘folds’ between linear
regions. It turns out that folds carry a lot of information about the parameters of a network, so much
in fact, that some networks are uniquely identified (up to permutation and scaling) by the function
they implement. This is the main insight of the theorem.

In the following sections, we introduce in more detail the concept of a fold-set, and describe its
geometric structure for a subclass of ReLU networks. The paper culminates in a proof sketch of the
main result. The full proof, including proofs of intermediate results, is included in the Appendix.

2 RELATED WORK

The functional equivalence of neural networks is a well-researched topic in classical connectionist
literature. The problem was first posed by Hecht-Nielsen (1990), and soon resolved for feed-forward
networks with the tanh activation function by Chen et al. (1993), who showed that any smooth
transformation of the weight space that preserves the function of all neural networks is necessarily
a composition of permutations and sign flips. For the same class of networks, Fefferman & Markel
(1994) showed a somewhat stronger result: knowledge of the input-output mapping of a neural
network determines both its architecture and its weights, up to permutations and sign flips. Similar
results have been proven for single-layer networks with a saturating activation function such as
sigmoid or RBF (Kůrková & Kainen, 1994), as well as single-layer recurrent networks with a smooth
activation function (Albertini & Sontag, 1993a;b).

To the best of our knowledge, no such theoretical results exist for networks with the ReLU activation,
which is non-saturating, asymmetric and non-smooth. Broadly related is the recent work by Petersen
et al. (2018) and Berner et al. (2019) who study whether two neural networks (ReLU or otherwise)
that are close in the functional space have parameterisations that are close in the weight space. This
is called inverse stability. In contrast, we are interested in ReLU networks that are functionally
identical, and ask about all their possible parameterisations.

In terms of proof technique, our approach is based on the geometry of piece-wise linear functions,
specifically the boundaries between linear regions. The intuition for this kind of analysis has pre-
viously been presented by Raghu et al. (2017) and Serra et al. (2018), and somewhat similar proof
techniques to ours have been used by Hanin & Rolnick (2019) in the context of counting the number
of linear decision regions.

Finally, the sets of equivalent parametrisations can be viewed as symmetries in the weight space,
with implications for optimisation. Multiple authors, including e.g. Neyshabur et al. (2015); Badri-
narayanan et al. (2016); Stock et al. (2019), have observed that the naive loss gradient is sensitive to
reparametrisation by scaling, and proposed alternative, scaling-invariant optimisation procedures.
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3 RELU NETWORKS

This section introduces notation and two important classes of ReLU networks that we refer to
throughout the manuscript. We denote by σ the ReLU function: σ(u)i = max {0, ui} for
i ∈ [dim(u)]; the subscript index denotes the corresponding vector element.

ReLU network. Let Z ⊆ Rd0 with d0 ≥ 2 be a nonempty open set, and let θ ,
(W1,b1, . . . ,WL,bL) be the network’s parameters, with Wl ∈ Rdl×dl−1 , bl ∈ Rdl , and dL = 1.
We denote the corresponding ReLU network by hθ : Z→ R, where

hθ , h
L
θ ◦ σ ◦ hL−1θ ◦ · · · ◦ σ ◦ h1θ, (6)

and hlθ(z) = Wl · z + bl. For 1 ≤ l ≤ k ≤ L, we also introduce notation for truncated networks,

hl:kθ , h
k
θ ◦ σ ◦ hk−1θ · · · ◦ σ ◦ hlθ. (7)

We will omit the subscript θ when it is clear from the context.

General ReLU network. In this work, we restrict our attention to so-called general ReLU net-
works. Intuitively, a general network is one that satisfies a number of non-degeneracy properties,
such as all weight matrices having non-zero entries and full rank, no two network units exactly
cancelling each other out, etc. It can be shown1 that almost all ReLU networks are general. In
other words, a sufficient condition for a ReLU network to be general with probability one is that its
weights are sampled from a distribution with a density.

More formally, a general ReLU network is one that satisfies the following three conditions.

1. For any unit (l, i), the local optima of h1:li do not have value exactly zero.

2. For all k ≤ l and all diagonal matrices (Ik, . . . , Il) with entries in {0, 1},

rank(IlWlIl−1 · · · IkWk) = min {dk−1, rank(Ik), . . . , rank(Il−1), rank(Il)}. (8)

3. For any two units (l, i), (k, j), any linear region R1 ⊆ Z of h1:li , and any linear region
R2 ⊆ Z of h1:kj , the linear functions implemented by h1:li on R1 and h1:kj on R2 are not
multiples of each other.

General networks are convenient to study, as they exclude many degenerate special cases.

The second important class of ReLU networks are so-called transparent networks. Their signifi-
cance as well as their name will become clear in the next section. For now, we state the definition.

Transparent ReLU network. A ReLU network h : Z → R is called transparent if for all z ∈ Z
and l ∈ [L− 1], there exists i ∈ [dl] such that h1:li (z) ≥ 0. In words, we require that for any input,
at least one unit on each layer is active.

4 FOLD-SETS

In this section we introduce the concept of fold-sets, which is key to our understanding of ReLU
networks and their prediction surfaces. Since ReLU networks are piece-wise linear functions, a
great deal about them is revealed by the boundaries between individual linear regions. A network’s
fold-set is simply the union of all these boundaries.

More formally, if Z is an open set, and f : Z→ R is any continuous, piece-wise linear function, we
define the fold-set of f , denoted by F(f), as the set of all points at which f is non-differentiable.

It turns out there is a class of networks whose fold-sets are especially easy to understand; these are
the ones we have termed transparent. For transparent networks, we have the following characterisa-
tion of the fold-set (which also motivates the name ‘transparent’).

1See Appendix, Lemmas A.10, A.11 and A.12.
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Figure 1: A piece-wise linear surface of order one, two and three.3

Lemma 1. If h : Z→ R is a general and transparent ReLU network, then

F(h) =
⋃
l,i

{
z |h1:li (z) = 0

}
. (9)

To appreciate the significance of the lemma, suppose we are given some transparent ReLU network
function h and we want to infer its parameters. This lemma shows that the knowledge of the end-
to-end mapping h , h1:L in fact gives us information about the network’s hidden units h1:li (hence
‘transparent’). Moreover, this information is very explicit: we observe the units’ zero-level sets,
which in the case of a linear unit on a full-dimensional space already determines the unit’s parame-
ters up to scaling2. Of course, dealing with piece-wise linearity and disambiguating the union into
its constituent zero-level sets remains a challenge for upcoming sections.

5 PIECE-WISE LINEAR SURFACES

In this section, we provide a geometric description of fold-sets of transparent networks. Intuitively,
the fold-sets look like the sets shown in Figure 1. The first-layer units of a network are linear, so the
component

⋃
i

{
z |h1:1i (z) = 0

}
of the fold-set (9) is a union of hyperplanes, illustrated by the blue

lines in Figure 1. These hyperplanes partition the input space into a number of regions that each
correspond to a different activation pattern. For a fixed activation pattern, or equivalently on each
region, the second-layer units are linear, so their zero-level sets

⋃
i

{
z |h1:2i (z) = 0

}
are composed

of piece-wise hyperplanes on the partition induced by the first-layer units. This is shown by the
orange lines in Figure 1. More generally, the lth-layer zero-level sets

⋃
i

{
z |h1:li (z) = 0

}
consist of

piece-wise hyperplanes on the partition induced by all lower-layer units. This yields a fold-set that
looks like the set in the right pane of Figure 1, but potentially much more complicated.

We now define these concepts more precisely.

Piece-wise hyperplane. Let P be a partition of Z. We say H ⊆ Z is a piece-wise hyperplane
with respect to partition P, if H is nonempty and there exist (w, b) 6= (0, 0) and P ∈ P such that
H = {z ∈ P |wᵀz + b = 0}.

Piece-wise linear surface. A set S ⊆ Z is called a piece-wise linear surface on Z of order κ if
it has a representation of the form S =

⋃
l∈[κ],i∈[nl] H

l
i, where each Hl

i is a piece-wise hyperplane
with respect to the partition induced by

⋃
k∈[l−1],j∈[nk] H

k
j , and no number smaller than κ admits

such a representation.

Using these definitions, the following lemma formalises the intuition behind Figure 1.

Lemma 2. If h is a general and transparent ReLU network, then its fold-set is a piece-wise linear
surface of order at most L− 1.

2See Appendix, Lemma A.19.
3A similar figure has appeared in the work of Raghu et al. (2017).
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Figure 2: A piece-wise linear surface with few intersections be-
tween piece-wise hyperplanes. From the fold-set alone (right)
it is not possible to determine if a hyperplane emerged from the
first layer (left, blue) or from the second one (left, orange).

Figure 3: Greedy layer as-
signment to the piece-wise
linear surface in Figure 1.

The final ingredient we will need to be able to reason about the parameterisation of ReLU networks
is a more precise characterisation of the fold-set, in particular, the dependence structure between
individual piece-wise hyperplanes. For example, consider the piece-wise linear surface in Figure 1
and compare it to the one in Figure 2. Suppose as before that the blue hyperplanes come from
first-layer units, the orange hyperplanes come from second-layer units, and the black hyperplanes
come from third-layer units. The difference between Figure 1 and Figure 2 is that if we observe only
the fold-set, i.e. only the union of the zero-level sets over all layers (as shown in the right pane of
Figure 2), then in the case of Figure 2, it is impossible to know which folds come from which layers.
For instance, the blue folds and the orange folds could be assigned to the first and second layer
almost arbitrarily; there is not enough information (i.e. intersection) in the fold-set to tell which is
which. In contrast, the piece-wise linear surface in the right pane of Figure 1 could in principle be
disambiguated into first-, second- and third- layer folds by the following procedure:

1. Take the largest possible union of hyperplanes that is a subset of the fold-set, and assign
the hyperplanes to layer one.

2. Take all piece-wise hyperplanes with respect to the partition induced by the first-layer folds,
and assign them to layer two.

3. Take all piece-wise hyperplanes with respect to the partition induced by the first- and
second- layer folds, and assign them to layer three.

This procedure is not guaranteed to assign all folds to their original layers because it ignores how
piece-wise hyperplanes are connected; for example for the piece-wise linear surface in Figure 1, the
procedure yields the layer assignment shown in Figure 3. However, it is sufficient for our purposes,
and it is easier to work with mathematically.

Formally, for a piece-wise linear surface S, we denote

�kS :=
⋃
{S′ ⊆ S | S′ is a piece-wise linear surface of order at most k}. (10)

One can show4 that �kS is itself a piece-wise linear surface of order at most k, so one can think of
�kS as the ‘largest possible’ subset of S that is a piece-wise linear surface of order at most k. For
the piece-wise linear surface in Figure 3, the set �1S consists of the blue hyperplanes, �2S consists
of the blue and the orange (piece-wise) hyperplanes, and �3S = S.

This definition allows us to uniquely decompose S into its piece-wise hyperplanes. Let S =⋃
l∈[κ],i∈[nl] H

l
i be any representation of S in terms of its piece-wise hyperplanes. We say the rep-

resentation is canonical if each Hl
i is distinct and

⋃
l∈[k],i∈[nl] H

l
i = �kS for all k ∈ [κ]. One can

show5 that such a representation exists and is unique up to subscript indexing. Importantly, it assigns
a unique ‘layer’ to each piece-wise hyperplane, its superscript.

4See Appendix, Lemma A.1.
5See Appendix, Lemmas A.5 and A.6.
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Figure 4: A piece-wise linear surface in canonical form and its dependency graph.

The dependency graph (see also Figure 4) is a way to formally describe the dependencies between
piece-wise hyperplanes.

Dependency graph. Let S =
⋃
l∈[κ],i∈[nl] H

l
i be the canonical representation of S. The depen-

dency graph of S is the directed graph that has the piece-wise hyperplanes
{
Hl
i

}
l,i

as vertices, and
has an edge Hl

i → Hk
j iff l < k and relintHl

i ∩ clHk
j 6= ∅. That is, there is and edge Hl

i → Hk
j if

Hk
j ‘depends on’ or ‘bends at’ Hl

i.

6 MAIN RESULT

With all the necessary concepts in place, we now put the pieces together and explain the proof idea
behind the main result. We restate the theorem here for the reader’s convenience.
Theorem 1. Consider a bounded open nonempty domain Z ⊆ Rd0 and any architecture
(d0, . . . , dL) with d0 ≥ d1 ≥ · · · ≥ dL−1 ≥ 2, dL = 1. For this architecture, there exists a
ReLU network hθ : Z→ R such that for any general ReLU network hη : Z→ R (with the same ar-
chitecture) satisfying hθ(z) = hη(z) for all z ∈ Z, there exist permutation matrices P1, . . .PL−1,
and positive diagonal matrices M1, . . . ,ML−1, such that

W1 = M1P1W
′
1, b1 = M1P1b

′
1,

Wl = MlPlW
′
lP
−1
l−1M

−1
l−1, bl = MlPlb

′
l, l ∈ {2, . . . , L− 1}, (11)

WL = W′
LP−1L−1M

−1
L−1, bL = b′L,

where (W1,b1, . . . ,WL,bL) are the parameters of hθ, and (W′
1,b
′
1, . . . ,W

′
L,b

′
L) are the pa-

rameters of hη .

In other words, for architectures with non-increasing widths, there exists a ReLU network h such
that knowledge of the input-output mapping h determines the network’s parameters uniquely up to
permutation and scaling.

The idea behind the proof is as follows. Suppose we are given the function h. Then we also know
its fold-set F(h), and if h is general and transparent, the fold-set is a piece-wise linear surface (by
Lemma 2) of the form F(h) =

⋃
l,i

{
z |h1:li (z) = 0

}
. As we have mentioned earlier, this union

of zero-level sets contains a lot of information about the network’s parameters, provided we can
disambiguate the union to obtain the zero-level sets of individual units.

This disambiguation of the union is crucial, but is impossible in general. To see why, con-
sider the first-layer units: given F(h), we want to identify

⋃
i

{
z |h1:1i (z) = 0

}
. We know that⋃

i

{
z |h1:1i (z) = 0

}
is a union of d1 hyperplanes that is a subset of �1F(h), so if �1F(h) is a

union of d1 hyperplanes, we are done. In general however, F(h) may contain more than d1 hyper-
planes, such as for example in Figure 2. In such a setting it is impossible to tell which hyperplanes
come from the first layer.
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The key insight here is the following: even though, say, a last-layer unit can create a fold that looks
like a hyperplane, this hyperplane cannot have any dependencies, or descendants in the dependency
graph. This follows from the fact that the layer is the last. More generally, if a (piece-wise) hyper-
plane has a chain of descendants of length m, it must come from a layer that is at least m layers
below the last one. Formally, we have the following lemma.

Lemma 3. Let h : Z→ R be a general ReLU network. Denote S :=
⋃
l∈[λ],i∈[dl]

{
z |h1:li (z) = 0

}
and let S =

⋃
k∈[κ],j∈[nk] H

k
j be the canonical representation of S. Then for all Hk

j there exists a
unit (l, i) with l ≥ k such that Hk

j ⊆
{
z |h1:li (z) = 0

}
. Moreover, if the dependency graph of S

contains a directed path of length m starting at Hk
j , then l ≤ λ−m.

Main proof idea. This lemma motivates the main idea of the proof. We explicitly construct a
network h such that the dependency graph of its fold-set is well connected. More precisely, we
ensure that each of the hyperplanes corresponding to first-layer units has a chain of descendants of
length L − 2. This implies by Lemma 3 that the first-layer hyperplanes can be identified as such,
using only the information contained in the fold-set. One can show that this is sufficient to recover
the parameters W1,b1, up to permutation and scaling. To extend the argument to higher-layers, we
then consider the truncated network hl:L. In hl:L, layer l becomes the first layer, and we apply the
same reasoning as above to recover Wl,bl.

The next lemma shows that a network with a ‘well connected’ dependency graph exists. In what
follows, f |A denotes the restriction of a function f to a domain A, and Zlθ ,

{
σ(h1:lθ (z)) | z ∈ Z

}
is the set of all possible inputs to the truncated network hl:L. For notational convenience, we define
Z0
θ , Z.

Lemma 4. For a bounded open nonempty domain Z and architecture (d0, . . . , dL) with d0 ≥ d1 ≥
· · · ≥ dL−1 ≥ 2, dL = 1, there exists a general transparent ReLU network h : Z → R such that
for l ∈ [L− 1], the fold-set F(hl:L|intZl−1) is a piece-wise linear surface whose dependency graph
contains dl directed paths of length (L− 1− l) with distinct starting vertices.

Theorem 1 then follows by the inductive argument outlined above.

Proof sketch of Theorem 1. Let hθ be the network from Lemma 4. One can show that if hθ is
transparent, and hη(z) = hθ(z) for all z ∈ Z, then also hη is transparent, and all the truncated
networks hl:Lθ , hl:Lη are transparent.

We proceed by induction. Let l = 1. Then we have

hl:Lθ |intZl−1
θ
≡ hθ ≡ hη ≡ hl:Lη |intZl−1

θ
(12)

which implies F(hl:Lθ |intZl−1
θ

) = F(hl:Lη |intZl−1
θ

). (For notational convenience, we will omit the
domain restriction for now.) Because both networks are general and transparent, the fold-sets are
representable as unions of the respective zero-level sets, and we obtain⋃

k∈[L−l],j∈[dk]

{
z |hl:l−1+kθ [j](z) = 0

}
=

⋃
k∈[L−l],j∈[dk]

{
z |hl:l−1+kη [j](z) = 0

}
(13)

This is a piece-wise linear surface, whose dependency graph by Lemma 4 contains dl directed paths
of length (L−1−l) with distinct starting vertices. Denote these vertices H1, . . . ,Hdl . By Lemma 3,
Hi ⊆

{
z |hl:l−1+λθ [ι](z) = 0

}
for some (λ, ι) with λ ≤ (L − l) − (L − 1 − l) = 1. We thus

obtain
⋃
i∈[dl] Hi ⊆

⋃
i∈[dl]

{
z |hlθ[ι](z) = 0

}
, where on the left-hand side we have a union of dl

hyperplanes, and on the right-hand side we have a union of at most dl hyperplanes. It follows that
the two sides are equal, and by applying the same argument to hη , we get⋃

i∈[dl]

{
z |hlθ[i](z) = 0

}
=
⋃
i∈[dl]

{
z |hlη[i](z) = 0

}
. (14)

Therefore there must exist a permutation π : [dl]→ [dl] such that{
z |hlθ[i](z) = 0

}
=
{
z |hlη[π(i)](z) = 0

}
(15)
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for all i. One can show6 that this implies the existence of scalars m1, . . .mdl , such that

(Wl[i, :], bl[i]) = mi(W
′
l[π(i), :], b′l[π(i)]). (16)

We know that mi 6= 0 because the folds
{
z |hlθ[i](z) = 0

}
,
{
z |hlη[i](z) = 0

}
, are nonempty; oth-

erwise
⋃
i∈[dl] Hi could not be a union of dl hyperplanes. We have thus shown that there exists

a permutation matrix Pl ∈ Rdl×dl and a nonzero-entry diagonal matrix Ml ∈ Rdl×dl such that
Wl = MlPlW

′
l and bl = MlPlb

′
l. One can also show that the scalars mi are positive.7

For the inductive step, let l ∈ {2, . . . , L− 1}, and assume that there exist permutation matrices
P1, . . . ,Pl−1, and positive-entry diagonal matrices M1, . . . ,Ml−1, such that (65) holds up to layer
l − 1. Then h1:l−1θ ≡Ml−1Pl−1h

1:l−1
η . Since the end-to-end mappings are the same, h1:Lθ ≡ h1:Lη ,

it follows that the truncated mappings satisfy

hl:Lθ |intZl−1
θ
≡
(
hl:Lη ◦P−1l−1M

−1
l−1
)∣∣

intZl−1
θ

≡ hl:Lη̃ |intZl−1
θ
, (17)

where η̃ := (W′
lP
−1
l−1M

−1
l−1,b

′
l,W

′
l+1,b

′
l+1, . . . ,W

′
L,b

′
L). We therefore apply the same argu-

ment to hl:Lθ |intZl−1
θ

and hl:Lη̃ |intZl−1
θ

as we presented above for the case l = 1. We obtain that there

exists a permutation matrix Pl ∈ Rdl×dl and a positive-entry diagonal matrix Ml ∈ Rdl×dl such
that

Wl = MlPlW
′
lP
−1
l−1M

−1
l−1, bl = MlPlb

′
l. (18)

Finally, consider the last layer. We know that h1:L−1θ ≡ ML−1PL−1h
1:L−1
η , which implies hLθ ≡

hLη ◦ P−1L−1M
−1
L−1, i.e. hLθ and hLη ◦ P−1L−1M

−1
L−1 are identical linear functions supported on the

full-dimensional domain ZL−1θ . It follows that WL = W′
LP−1L−1M

−1
L−1 and bL = b′L.

Discussion of assumptions. Most of the theorem’s assumptions have their origin in Lemma 4. The
reason we restrict the domain of hl:L to the interior of Zl−1 is that we want hl:L to be defined on an
open set (otherwise fold-sets become unwieldy). For similar reasons, we study only architectures
with non-increasing widths; otherwise intZl−1 may be empty. We conjecture that the theorem does
not hold for more general architectures. If it does, the proof will likely go beyond fold-sets.

To guarantee transparency, our construction is such that for each input z ∈ Z and layer l ∈ [L− 1],
either h1:l1 (z) > 0 or h1:l2 (z) > 0. Transparency could in principle be achieved with just a single
unit, but it would have to be positive everywhere. This is why we impose dl ≥ 2. Guaranteeing
transparency for the first layer (whose inputs are not constrained to the positive quadrant) also ne-
cessitates boundedness of Z. Boundedness can be lifted if we consider a slightly modified definition
of transparency; proofs become more complicated though and we do not consider this crucial.

Almost all of the proof carries over to the case of leaky ReLU activations (where σ is defined as
σ(u)i = max {αui, ui} for some small α > 0). The part that does not carry over is our proof that
Ml has only positive entries on the diagonal: In this part, we compare the slope of hl:Lθ for inputs
on the positive and negative side of a given ReLU unit, and notice that the negative-side slope is
‘singular’ in the sense that some basis directions have zero magnitude. This particular argument
does not work for the leaky ReLU, though we cannot rule out that a simple workaround exists.

7 DISCUSSION & FUTURE WORK

In this work, we have shown that for architectures with non-increasing widths, certain ReLU net-
works are almost uniquely identified by the function they implement. The result suggests that the
function-equivalence classes of ReLU networks are surprisingly small, i.e. there may be only little
redundancy in the way ReLU networks are parameterised, contrary to what is commonly believed.

This apparent contradiction could be explained in a number of ways:

• It could be the case that even though exact equivalence classes are small, approximate
equivalence is much easier to achieve. That is, it could be that ‖hθ − hη‖ ≤ ε is satisfied

6See Appendix, Lemma A.19.
7See Appendix, Theorem A.1.

8



Published as a conference paper at ICLR 2020

by a disproportionately larger class of parameters η than ‖hθ − hη‖ = 0. This issue is
related to the so-called inverse stability of the realisation map of neural nets, which is not
yet well understood.

• Another possibility is that the kind of networks we consider in this paper is not represen-
tative of networks typically encountered in practice, i.e. it could be that ‘typical networks’
do not have well connected dependency graphs, and are therefore not easily identifiable.

• Finally, we have considered only architectures with non-increasing widths, whereas some
previous theoretical work has assumed much wider intermediate layers compared to the
input dimension. It is possible that parameterisation redundancy is much larger in such
a regime compared to ours. However, gains from over-parameterisation have also been
observed in practical settings with architectures not unlike those considered here.

We consider these questions important directions for further research. We also hypothesise that our
analysis could be extended to convolutional and recurrent networks, and to other piece-wise linear
activation functions such as leaky ReLU.
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A APPENDIX

Use the following look-up table to find a particular lemma or theorem and its proof.

Lemma 1 → Lemma A.15
Lemma 2 → Corollary A.1
Lemma 3 → Lemma A.18
Lemma 4 → Lemma A.17
Theorem 1 → Theorem A.1

A.1 PIECE-WISE LINEAR SURFACES

Definition A.1 (Partition). Let S ⊆ Z. We define the partition of Z induced by S, denoted PZ(S), as
the set of connected components of Z \ S.

Definition A.2 (Piece-wise hyperplane). Let P be a partition of Z. We say H ⊆ Z is a piece-wise
hyperplane with respect to partition P, if H 6= ∅ and there exist (w, b) 6= (0, 0) and P ∈ P such
that H = {z ∈ P |wᵀz + b = 0}.
Definition A.3 (Piece-wise linear surface / pwl. surface). A set S ⊆ Z is called a piece-wise linear
surface on Z of order κ if it can be written as S =

⋃
l∈[κ],i∈[nl] H

l
i, where each Hl

i is a piece-wise
hyperplane with respect to PZ(

⋃
k∈[l−1],j∈[nk] H

k
j ), and no number smaller than κ admits such a

representation.

Lemma A.1. If S1, S2 are piece-wise linear surfaces on Z of order k1 and k2, then S1 ∪ S2 is a
piece-wise linear surface on Z of order at most max {k1, k2}.

Proof. Let S1 =
⋃
l∈[k1],i∈[nl] H

l
i and S2 =

⋃
l∈[k2],i∈[ml] G

l
i be the pwl. surface representations of

S1, S2. Given Hl
i, consider the partition

P := PZ

( ⋃
k∈[l−1],j∈[nk]

Hk
j ∪

⋃
k∈[max {l−1,k2}],j∈[mk]

Gkj

)
. (1)

We can write Hl
i =

⋃
P∈P Hl

i ∩ P and denote the nonempty intersections Hl
i ∩ P as

{
H̄l
i,j

}
j
.

Similarly, we decompose Gli =
⋃
j Ḡ

l
i,j . Then S1 ∪ S2 =

⋃
l∈[max {k1,k2}](

⋃
i,j H̄

l
i,j ∪

⋃
i,j Ḡ

l
i,j),

where each H̄l
i,j and Ḡli,j is a piece-wise hyperplane wrt. P = PZ(

⋃
k∈[l−1](

⋃
i′,j′ H̄

k
i′,j′ ∪⋃

i′,j′ Ḡ
k
i′,j′)).

Given sets Z and S ⊆ Z, we introduce the notation

�iS :=
⋃
{S′ ⊆ S | S′ is a pwl. surface on Z of order at most i}. (2)

(The dependence on Z is suppressed.) By Lemma A.1, �iS is itself a pwl. surface on Z of order at
most i.
Lemma A.2. For i ≤ j and any set S, we have �i�jS = �j�iS = �iS.

Proof. We will need these definitions:

�iS =
⋃
{S′′ ⊆ S | S′′ is a pwl. surface of order at most i}, (3)

�jS =
⋃
{S′′ ⊆ S | S′′ is a pwl. surface of order at most j}, (4)

�i�jS =
⋃
{S′′ ⊆ �jS | S′′ is a pwl. surface of order at most i}, (5)

�j�iS =
⋃
{S′′ ⊆ �iS | S′′ is a pwl. surface of order at most j}. (6)

Consider first the equality �j�iS = �iS. We know that �j�iS ⊆ �iS because the square operator
always yields a subset. At the same time, �iS ⊆ �j�iS, because �iS satisfies the condition for
membership in (6).
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To prove the equality �i�jS = �iS, we use the inclusion �jS ⊆ S to deduce �i�jS ⊆ �iS. Now
let S′′ ⊆ S be one of the sets under the union in (3), i.e. it is a pwl. surface of order at most i. Then it
is also a pwl. surface of order at most j, implying S′′ ⊆ �jS. This means S′′ is also one of the sets
under the union in (5), proving that �iS ⊆ �i�jS.

Lemma A.3. Let Z and S ⊆ Z be sets. Then one can write �k+1S = �kS ∪
⋃
iHi where Hi are

piece-wise hyperplanes wrt. PZ(�kS).

Proof. Let �k+1S =
⋃
l∈[κ],i∈[nl] H

l
i be the pwl. surface representation of �k+1S. If κ ≤ k, then

�k+1S = �kS and we are done. Otherwise,
⋃
l∈[k],i∈[nk] H

l
i ⊆ �kS, implying

�k+1S ⊆ �kS ∪
⋃

i∈[nk+1]

Hk+1
i . (7)

At the same time, �kS ∪
⋃
i∈[nk+1]

Hk+1
i is a pwl. surface of order at most k + 1 because �kS is

a pwl. surface of order at most k and Hk+1
i can be decomposed into piece-wise hyperplanes wrt.

PZ(�kS). Therefore, �kS ∪
⋃
i∈[nk+1]

Hk+1
i ⊆ �k+1S, implying in fact equality.

Definition A.4 (Canonical representation of a pwl. surface). Let S be a pwl. surface on Z. The pwl.
surface representation S =

⋃
l∈[κ],i∈[nl] H

l
i is called canonical if

⋃
l∈[k],i∈[nl] H

l
i = �kS for all

k ∈ [κ], and each Hl
i is distinct.

Lemma A.4. If S =
⋃
l∈[κ],i∈[nl] H

l
i is a pwl. surface in canonical form, then κ is the order of S.

Proof. Denote the order of S by λ. By the definition of order, λ ≤ κ, and S = �λS. Then, since
S =

⋃
l∈[κ],i∈[nl] H

l
i is a canonical representation, we have⋃

l∈[λ],i∈[nl]

Hl
i = �λS = S =

⋃
l∈[κ],i∈[nl]

Hl
i. (8)

It follows that κ = λ.

Lemma A.5. Every pwl. surface has a canonical representation.

Proof. The inclusion
⋃
l∈[k],i∈[nl] H

l
i ⊆ �kS holds for any representation. We will show the other

inclusion by induction in the order of S. If S is order one, �1S ⊆ S =
⋃
i∈[n1]

H1
i holds for

any representation and we are done. Now assume the lemma holds up to order κ − 1, and let
S be order κ. Then by Lemma A.3, S = �κS = �κ−1S ∪

⋃
iH

κ
i , where Hκ

i are piece-wise
hyperplanes wrt. PZ(�κ−1S). By the inductive assumption, �κ−1S has a canonical representation,
say �κ−1S =

⋃
l∈[κ−1],i∈[nl] H

l
i. We claim that S =

⋃
l∈[κ],i∈[nl] H

l
i is a canonical representation

of S. If k = κ, then clearly �kS ⊆ S =
⋃
l∈[κ],i∈[nl] H

l
i. If k ∈ [κ − 1], then by Lemma A.2,

�kS = �k�κ−1S =
⋃
l∈[k],i∈[nl] H

l
i, where we have used the canonical representation of �κ−1S.

Finally, distinctness of Hl
i can be ensured by throwing away duplicates.

Lemma A.6. Let Z be an open set. If S is a piece-wise linear surface on Z, and if S =⋃
l∈[κ],i∈[nl] H

l
i and S =

⋃
k∈[κ],j∈[mk] G

k
j are two canonical representations of S, then for all

l ∈ [κ], nl = ml and there exists a permutation π : [nl] → [nl] such that Hl
i = Glπ(i). In other

words, the canonical representation is unique up to within-order indexing.

Proof. Let k ∈ [κ]. Because both representations are canonical, we have

�k−1S ∪
⋃

i∈[nk]

Hk
i = �kS = �k−1S ∪

⋃
j∈[mk]

Gkj , (9)

where Hk
i and Gkj are piece-wise hyperplanes wrt. PZ(�k−1S). Then for each P ∈ PZ(�k−1S),

P ∩
⋃

i∈[nk]

Hk
i = P ∩

⋃
j∈[mk]

Gkj , (10)

where on both sides above we have a union of hyperplanes on an open set. The claim follows.
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Definition A.5 (Dependency graph of a pwl. surface). Let S be a piece-wise linear surface on Z,
and let S =

⋃
l∈[κ],i∈[nl] H

l
i be its canonical representation. We define the dependency graph of

S as the directed graph that has the piece-wise hyperplanes
{
Hl
i

}
l,i

as vertices, and has an edge
Hl
i → Hk

j iff l < k and Hl
i ∩ clHk

j 6= ∅.

A.2 RELU NETWORKS AND FOLDS

We denote by σ the ReLU function: σ(u)i = max {0, ui} for i ∈ [dim(u)].
Definition A.6 (ReLU network). Let Z ⊆ Rd0 with d0 ≥ 2 be a nonempty open set, and let
θ , (W1,b1, . . . ,WL, bL) be the network’s parameters, with Wl ∈ Rdl×dl−1 , bl ∈ Rdl , and
dL = 1. A ReLU network parameterised by θ is the function hθ : Z→ R, defined by

hθ , h
L
θ ◦ σ ◦ hL−1θ ◦ · · · ◦ σ ◦ h1θ, (11)

where hlθ(z) = Wl · z + bl. For 1 ≤ l ≤ k ≤ L, we also denote

hl:kθ , h
k
θ ◦ σ ◦ hk−1θ · · · ◦ σ ◦ hlθ, (12)

ȟl:kθ , σ ◦ hl:kθ . (13)

For a ReLU network hθ : Z → R and l ∈ [L − 1], denote Zlθ ,
{
ȟ1:lθ (z) | z ∈ Z

}
. Also, for

convenience, define Z0
θ , Z. (We will omit the subscript θ when it is clear from the context.) We

write f |A to denote the restriction of the function f to the domain A.

Definition A.7 (Activation indicator). A tuple I , (I1, . . . , IL−1) is called an activation indicator
if Il = diag(il) ∈ Rdl×dl and il ∈ {0, 1}dl for l ∈ [L − 1]. It is called non-trivial if il 6= 0 for all
l ∈ [L− 1] and non-trivial up to k if il 6= 0 for all l ∈ [k].

Given a parameter vector θ , (W1,b1, . . . ,WL,bL) and an activation indicator I, we introduce
the notation

wl
i(θ, I) , eᵀ

i WlIl−1Wl−1 · · · I1W1, (14)

bli(θ, I) , eᵀ
i

l∑
k=1

WlIl−1 · · ·Wk+1Ikbk. (15)

(We will omit the argument θ when it is clear from the context.) These quantities characterise the dif-
ferent linear pieces implemented by the network’s units. Also define Iθ(z) , (Iθ1(z), . . . , IθL−1(z))

as the activation indicator for a specific input: Iθl (z)[i, i] , 1
{
h1:li (z) ≥ 0

}
for all (l, i).

Lemma A.7. In a ReLU network with parameters θ = (W1,b1, . . . ,WL, bL), the pre-activations
satisfy h1:li (z) ∈

{
wl
i(θ, I) · z + bli(θ, I)

}
I
, where the indexing runs over all possible activation

indicators I. More precisely, h1:li (z) = wl
i(θ, I

θ(z)) · z + bli(θ, I
θ(z)).

Proof. Left as exercise.

Definition A.8 (Fold-set). Let Z be an open set, and f : Z → R a continuous, piece-wise linear
function. We define the fold-set of f , denoted by F(f), as the set of all points at which f is non-
differentiable.
Definition A.9 (Positive / negative in a neighbourhood). Let Z be an open set. The function f :
Z→ R is positive (negative) in the neighbourhood of z ∈ Z if for any ε > 0 there exists z′ ∈ Bε(z)
such that f(z′) > 0 (f(z′) < 0).
Definition A.10 (Unit fold-set). Let hθ : Z → R be a ReLU network. We define the unit (l, i)
fold-set of hθ, denoted Fli(hθ), as the set of all z ∈ Z where h1:lθ [i](z) = 0 and h1:lθ [i] is positive in
the neighbourhood of z.
Lemma A.8. Let Z be an open set, and f : Z → R a continuous piece-wise linear function. Then
F(σ ◦ f) consists of those z ∈ Z that satisfy

• f(z) > 0 and z ∈ F(f), or

13
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• f(z) = 0 and f is positive in the neighbourhood of z.

Proof. We will prove that if z satisfies any of the two conditions, then z ∈ F(σ◦f), and if it violates
both, then z ∈ F(σ ◦ f)c. We begin with the latter implication.

Let z be such that f(z) > 0 and z /∈ F(f), i.e. f is differentiable at z. Since f is piece-wise linear,
there exists ε > 0 such that all of Bε(z) lies inside a single linear region of f and f(Bε(z)) ⊆ (0,∞].
Then, on Bε(z), the ReLU behaves like an identity, implying σ ◦ f is differentiable at z, proving
that z ∈ F(σ ◦f)c. Next, consider z such that f(z) = 0. For it to violate the second condition, there
must exist a ball Bε(z) around z such that f(Bε(z)) ⊆ (−∞, 0]. (This is also true if f(z) < 0.)
Then, on Bε(z), the ReLU behaves like a constant zero, implying that σ ◦ f is differentiable at z.

We now prove the other implication. If f(z) > 0 and z ∈ F(f), then there exists ε > 0 such that
f(Bε(z)) ⊆ (0,∞], which guarantees that the ReLU behaves like an identity on Bε(z). In this ball,
we have σ ◦ f = f , so z ∈ F(σ ◦ f).

If f(z) = 0 and f is positive in the neighbourhood of z, we distinguish several cases. If z /∈ F(f),
then there exists a ball Bδ(z) on which f behaves linearly, i.e. σ(f(z)) = σ(wᵀz + b), implying
z ∈ F(σ ◦ f). If z ∈ F(f) and, in addition, there exists a ball Bδ(z) such that f(Bδ(z)) ⊆ [0,∞),
then the ReLU behaves like an identity on Bδ(z) and z ∈ F(σ ◦ f). The final case is z ∈ F(f) such
that f attains both positive and negative values in its neighbourhood. Since f is piece-wise linear,
there exist p,n such that f(z + εn) < 0 < f(z + εp), and z + εp, z + εn /∈ F(f) for all ε ∈ (0, 1].
Then ∇(σ ◦ f)(z + εp) 6= 0 and ∇(σ ◦ f)(z + εn) = 0, yielding z ∈ F(σ ◦ f).

Lemma A.9. Let Z be an open set, and let f1, . . . , fn : Z → R be continuous, piece-wise linear
functions. For any w1, . . . , wn ∈ R, define f =

∑n
i=1 wifi. Then F(f) ⊆

⋃n
i=1 F(fi).

Proof. Left as exercise.

A.3 GENERAL AND TRANSPARENT RELU NETWORKS

Lemma A.10. For all θ except a closed zero-measure set,

rank(WlIl−1 · · · IkWk) = min {dk−1, rank(Ik), . . . , rank(Il−1), dl}, (16)
rank(IlWlIl−1 · · · IkWk) = min {dk−1, rank(Ik), . . . , rank(Il−1), rank(Il)}, (17)

for all activation indicators I and all k ≤ l.

Proof. First, notice that (16) is just a special case of (17) with Il equal to the identity matrix. It
therefore suffices to prove (17).

To further simplify, we will prove the statement for a single fixed activation indicator I. Then if
Θ(I) is the set of networks for which (17) holds given I, and Θ(I) contains all networks except a
closed zero-measure set, then also

⋂
I Θ(I) contains all networks except a closed zero-measure set,

proving the lemma.

Let us hence fix I, and let k ∈ [L]. We proceed by induction. For the initial step, notice that the
matrix IkWk is just Wk with some rows replaced by zeroes. The rank of such a matrix is the same
as the matrix obtained by removing the zero rows, which has size (rank(Ik), dk−1). For all Wk

except a closed zero-measure set, this matrix has rank min {dk−1, rank(Ik)}.
For the inductive step, denote W̄i := IiWi · · · IkWk and

ri := min {dk−1, rank(Ik), . . . , rank(Ii)}. (18)

We assume that rank(W̄i−1) = ri−1 and want to prove the same for i. Notice that for all Wi except
a closed zero-measure set, any ri rows of Wi are linearly independent and their span intersects with
ker(W̄ᵀ

i−1) only at 0. To see this, recall that by the inductive assumption, rank(W̄ᵀ
i−1) = ri−1, so

ker(W̄ᵀ
i−1) has dimension di−1−ri−1. We can concatenate any ri-subset of rows of Wi to the basis

of ker(W̄ᵀ
i−1) to obtain a matrix of size (ri + di−1 − ri−1, di−1), which is a wide matrix, because

ri ≤ ri−1. Hence, its rows are linearly independent for all Wi except a closed zero-measure set.

14



Published as a conference paper at ICLR 2020

We now prove that rank(IiWiW̄i−1) = min
{

rank(W̄i−1), rank(Ii)
}
, ri. The “≤” direction is

immediate. For the “≥” direction, we distinguish between two cases. If rank(Ii) ≤ rank(W̄i−1),
let v1, . . .vri be the (linearly independent) nonzero rows of IiWi. We want to show that{
vᵀ
j W̄i−1

}
j

are linearly independent, i.e. that IiWiW̄i−1 has at least ri linearly independent

rows. If
∑ri
j=1 λjv

ᵀ
j W̄i−1 = 0, then

∑ri
j=1 λjvj ∈ ker(W̄ᵀ

i−1), which by assumption implies∑
λjvj = 0. By the independence of {vj}, we obtain λj = 0, i.e.

{
vᵀ
j W̄i−1

}
j

are linearly

independent, and rank(IiWiW̄i−1) = ri.

If rank(Ii) > rank(W̄i−1), we can reduce the problem to the case rank(Ii) ≤ rank(W̄i−1) by
observing that rank(IiWiW̄i−1) ≥ rank(JiWiW̄i−1) if Ji equals Ii only with some 1’s replaced
by 0’s. We can thus take any such Ji and apply the argument from the previous paragraph to obtain
rank(IiWiW̄i−1) ≥ rank(JiWiW̄i−1) ≥ ri.

Lemma A.11. For all θ except a closed zero-measure set, the following holds. Let (l, i), (k, j) be
any units, let I be an activation indicator non-trivial up to l−1, and let J be an activation indicator
non-trivial up to k − 1, such that (l, i, I1:l−1) 6= (k, j,J1:k−1). Then, for all scalars c ∈ R, it holds
that [wl

i(θ, I), bli(θ, I)] 6= c[wk
j (θ,J), bkj (θ,J)].

Proof. First, we exclude from consideration all θ = (W1,b1, . . . ,WL,bL) such that
eᵀ
i WlIl−1Wl−1 · · · IkWkej = 0 for some l, k, i, j, and some I non-trivial up to l − 1. Since

for any fixed (l, k, i, j, I), the set of θ satisfying the above is the set of roots of a non-trivial poly-
nomial in θ, it is zero-measure and closed. Because there are only finitely many configurations of
(l, k, i, j, I), we have thus excluded a closed zero-measure set of parameters. We will denote its
complement Θ∗.

From now on, we assume θ ∈ Θ∗. Notice that the case c = 0 of the lemma is thus automatically
satisfied, since wl

i(θ, I) , eᵀ
i WlIl−1Wl−1 · · · I1W1 6= 0 by the definition of Θ∗. In the following,

we can therefore assume c 6= 0 and treat (l, i, I) and (k, j,J) symmetrically.

Denote by Θ¬ ⊆ Θ∗ the set of parameters θ for which the lemma does not hold; we need to show
that Θ¬ is closed and zero-measure. We start by showing the latter property by contradiction.

Suppose Θ¬ is positive-measure. We know that for all θ ∈ Θ¬, there exist triples (l, i, I), (k, j,J)
as stated in the lemma, and a scalar c ∈ R such that [wl

i(θ, I), bli(θ, I)] = c[wk
j (θ,J), bkj (θ,J)]. Let

C denote the set of all triplet-pairs ((l, i, I), (k, j,J)) satisfying the conditions of the lemma; then
the previous statement can be written as

Θ¬ ⊆
⋃

((l,i,I),(k,j,J))∈C

{
θ ∈ Θ∗ | ∃c ∈ R : [wl

i(θ, I), bli(θ, I)] = c[wk
j (θ,J), bkj (θ,J)]

}
. (19)

Since C is finite, there exist ((l, i, I), (k, j,J)) ∈ C for which the set under the union (call it Θ′) is
positive-measure.

We now consider two cases. If (l, i) 6= (k, j), then observe that Θ′ must contain some θ,θ′ such
that θ = (W1,b1, . . . ,WL,bL) and θ′ = (W1,b1, . . . ,Wl,bl+δei, . . . ,WL,bL), where δ 6= 0
and l ≥ k. By membership in Θ′, there exist c, c′ ∈ R such that

[wl
i(θ, I), bli(θ, I)] = c[wk

j (θ,J), bkj (θ,J)], (20)

[wl
i(θ
′, I), bli(θ

′, I)] = c′[wk
j (θ′,J), bkj (θ′,J)]. (21)

Notice that wl
i,w

k
j do not depend on the bl[i]-component of θ, and neither does bkj because k ≤ l

and (k, j) 6= (l, i). It follows that [wk
j (θ,J), bkj (θ,J)] = [wk

j (θ′,J), bkj (θ′,J)] =: v. Notice also
that [wl

i(θ
′, I), bli(θ

′, I)] = [wl
i(θ, I), bli(θ, I) + δ]. Putting everything together, we have that

cv = [wl
i(θ, I), bli(θ, I)], (22)

c′v = [wl
i(θ, I), bli(θ, I) + δ], (23)

which implies (c′ − c)v = [0, δ], and in particular wk
j (θ,J) = 0. This contradicts the assumption

that θ ∈ Θ∗ and completes the proof for the case (l, i) 6= (k, j).
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If (l, i) = (k, j), then it must be that I1:l−1 6= J1:l−1. Wlog, let (λ, ι) ∈ [l − 1]× [dλ] be such that
Iλ[ι, ι] = 1 and Jλ[ι, ι] = 0. Then there exist θ,θ′ ∈ Θ′ such that θ = (W1,b1, . . . ,WL,bL) and
θ′ = (W1,b1, . . . ,Wλ,bλ+ δeι, . . . ,WL,bL), where δ 6= 0. Then there exist c, c′ ∈ R such that

[wl
i(θ, I), bli(θ, I)] = c[wl

i(θ,J), bli(θ,J)], (24)

[wl
i(θ
′, I), bli(θ

′, I)] = c′[wl
i(θ
′,J), bli(θ

′,J)], (25)

where as before, wl
i does not depend on the bλ[ι]-component. For bli we now have bli(θ

′,J) =
bli(θ,J) and bli(θ

′, I) = bli(θ, I) + d, where d = δeᵀ
i WlIl−1 · · ·Wλ+1eι and by membership in

Θ∗, d 6= 0. From here, we can proceed as in the case (l, i) 6= (k, j), completing the proof for Θ¬

being zero-measure.

Finally, we show that Θ¬ is closed. Let θ ∈ Θ∗ \ Θ¬, i.e. for all ((l, i, I), (k, j,J)) ∈ C,
the vectors [wl

i(θ, I), bli(θ, I)] and [wk
j (θ,J), bkj (θ,J)] are non-colinear. Since wl

i, b
l
i,w

k
j , b

k
j are

continuous functions in θ, there exists a small enough ε > 0 such that [wl
i(θ
′, I), bli(θ

′, I)] and
[wk

j (θ′,J), bkj (θ′,J)] are non-colinear for all θ′ ∈ Bε(θ) and all ((l, i, I), (k, j,J)) ∈ C. Hence,
Θ∗ \Θ¬ is open, and Θ¬ is closed.

Lemma A.12. For all ReLU nets h : Z→ R except a closed zero-measure set,

Fli(h) =
{
z ∈ Z |h1:li (z) = 0

}
(26)

=
{
z ∈ Z |h1:li is positive and negative in the neighbourhood of z

}
(27)

for all units (l, i).

Proof. We provide a proof for a single unit (l, i); the extension to all units follows from the finite
number of units.

Let G,H, denote the sets defined on the right-hand sides of (26) and (27) respectively. Clearly,
H ⊆ Fli(h) ⊆ G. We will show that G ⊆ H. Let Y ⊆ R denote the set of all local optima of
the function z 7→ Wl[i, :] · ȟ1:l−1(z). Due to piece-wise linearity of the function, and the finite
number of pieces, Y is finite. It follows that for all ReLU networks except a closed zero-measure
set, −bl[i] /∈ Y. It is thus guaranteed that h1:li never attains a local maximum or minimum at zero.
No z ∈ G can therefore be a local maximum or minimum, implying that h1:li is both positive and
negative in the neighbourhood of z. Hence, z ∈ H.

Definition A.11 (General ReLU network). A ReLU network is general if it satisfies Lemmas A.10,
A.11 and A.12.

All ReLU networks except a closed zero-measure set are general.

Lemma A.13. If h is a general ReLU network, then F(h1:li ) =
⋃dl−1

j=1 F(ȟ1:l−1j ) for all (l, i).

Proof. The inclusion F(h1:li ) ⊆
⋃dl−1

j=1 F(ȟ1:l−1j ) follows from Lemma A.9. For the other inclu-
sion, let z ∈ F(ȟ1:l−1k ) for some k ∈ [dl−1]. Then there exist sequences of points z1(ε), z2(ε) ∈
Bε(z) \

⋃dl−1

j=1 F(ȟ1:l−1j ) such that I(z1(ε)) =: I and I(z2(ε)) =: J are independent of ε, and
∇ȟ1:l−1k (z1(ε)) 6= ∇ȟ1:l−1k (z2(ε)). We consider three cases based on the (non-)triviality of I and J.

First, suppose both I and J are trivial up to l − 1. Then by Lemma A.7,

∇ȟ1:l−1k (z1(ε)) = Il−1[k, k] wl−1
k (I) = 0, (28)

and similarly ∇ȟ1:l−1k (z2(ε)) = 0, which contradicts ∇ȟ1:l−1k (z1(ε) 6= ∇ȟ1:l−1k (z2(ε). Hence, at
least one of I,J, must be non-trivial up to l − 1.

Second, say both I and J are non-trivial up to l − 1. From ∇ȟ1:l−1k (z1(ε)) 6= ∇ȟ1:l−1k (z2(ε)) it
follows that I1:l−1 6= J1:l−1, we can therefore apply Lemma A.11 to (l, i, I) and (l, i,J). We obtain
wl
i(I) 6= wl

i(J), implying ∇h1:li (z1(ε)) 6= ∇h1:li (z2(ε)). Thus, z must be a fold-point of h1:li .

Finally, say I is trivial up to l− 1 and J is non-trivial up to l− 1. Then∇h1:li (z1(ε)) = wl
i(I) = 0,

whereas Lemma A.11 applied to (l, i,J) with c = 0 yields ∇h1:li (z2(ε)) = wl
i(J) 6= 0. Hence,

∇h1:li (z1(ε)) 6= ∇h1:li (z2(ε)) and z must be a fold-point of h1:li .
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Definition A.12 (Transparent ReLU network). A ReLU network h : Z→ R is called transparent up
to layer m, if for all z ∈ Z and l ∈ [m], there exists i ∈ [dl] such that h1:li (z) ≥ 0, or in other words,
rank(Il(z)) ≥ 1. If h is transparent up to layer L− 1, we say it is transparent.

Lemma A.14. Let h : Z→ R be a ReLU network, and let λ ∈ [L]. If h is general, then hλ:L|intZλ−1

is general. If h is transparent, then hλ:L|intZλ−1 is transparent.

Proof. We will abbreviate hλ:L|intZλ−1 as hλ:L. Assume h is general. Then hλ:L clearly satisfies
Lemma A.10, and for all (l, i), Wl[i, :] 6= 0ᵀ. Next, we prove that hλ:L satisfies Lemma A.11.
Suppose this was not the case; then there exist units (λ − 1 + l, i), (λ − 1 + k, j), and non-trivial
activation indicators I = (Iλ, . . . , Iλ−1+l), J = (Jλ, . . . , Iλ−1+k), with (l, i, I) 6= (k, j,J), and a
scalar C ∈ R such that

eᵀ
i Wλ−1+lIλ−2+l · · · IλWλ = C · eᵀ

jWλ−1+kJλ−2+k · · ·JλWλ, (29)

and

eᵀ
i

λ−1+l∑
l′=λ

Wλ−1+lIλ−2+l · · ·Wl′+1Il′bl′ = (30)

C · eᵀ
j

λ−1+k∑
k′=λ

Wλ−1+kJλ−2+k · · ·Wk′+1Ik′bk′ . (31)

Then for any non-trivial indicator (I1, . . . , Iλ−1) , (J1, . . . ,Jλ−1), we obtain by post-multiplying
(29),

eᵀ
i Wλ−1+lIλ−2+l · · · I1W1 = C · eᵀ

jWλ−1+kJλ−2+k · · ·J1W1, (32)

and for all ι ∈ [λ− 1],

eᵀ
i Wλ−1+lIλ−2+l · · ·Wι+1Iιbι = C · eᵀ

jWλ−1+kJλ−2+k · · ·Wι+1Jιbι. (33)

The first equality means that wl
i(I) = C ·wk

j (J), and the second equality implies bli(I) = C · bkj (J).
However, that contradicts the fact that h satisfies Lemma A.11.

The last condition of generality is Lemma A.12. Suppose hλ:L does not satisfy the lemma. Then
there exists a unit (l, i) such that{

z ∈ intZl−1 |hλ:li (z) = 0
}
6⊆{

z ∈ intZl−1 |hλ:li is positive and negative in the neighbourhood of z
}
,

i.e. there exists z ∈ intZl−1 such that hλ:li (z) = 0, and for some ε > 0 either hλ:li (Bε(z)) ⊆
(−∞, 0] or hλ:li (Bε(z)) ⊆ [0,∞). However, then there exists z′ ∈ Z such that ȟ1:l−1(z′) = z,
and for z′ we obtain h1:li (z′) = 0, and by continuity, there is δ > 0 such that either h1:li (Bδ(z

′)) ⊆
(−∞, 0] or h1:li (Bδ(z

′)) ⊆ [0,∞). This contradicts the fact that h satisfies Lemma A.12. We have
thus shown that if h is general, then hλ:L|intZλ−1 is general.

Finally, assume h is transparent, i.e. for all z ∈ Z and l ∈ [L − 1], there exists i ∈ [dl] such that
h1:li (z) ≥ 0. Then also for all z ∈ intZλ−1 and l ∈ {λ, . . . , L− 1}, there exists i ∈ [dl] such that
hλ:li (z) ≥ 0. Hence, hλ:L is transparent.

Lemma A.15. a) For all ReLU networks h : Z → R and all l ∈ [L], i ∈ [dl], we have F(h1:li ) ⊆⋃
k∈[l−1],j∈[dk] F

k
j (h). In particular, F(h) ⊆

⋃
k∈[L−1],j∈[dl] F

k
j (h).

b) For all general ReLU networks h : Z → R transparent up to layer l − 1, we have
F(h1:li ) =

⋃
k∈[l−1],j∈[dk] F

k
j (h). In particular, for all general transparent ReLU networks,

F(h) =
⋃
k∈[L−1],j∈[dk] F

k
j (h).

Proof. We give a proof of b) only. A proof of a) can be obtained by replacing some equalities by
inclusions. We will prove by induction that F(h1:li ) =

⋃
k∈[l−1],j∈[dk] F

k
j (h) if h is general and

transparent up to layer l − 1. For l = 1, the function h1:li is linear, so F(h) = ∅ and the claim holds
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trivially. Now assume that F(h1:li ) =
⋃
k∈[l−1],j∈[dk] F

k
j (h) holds; we will prove the same statement

for l + 1. By Lemma A.8 and Lemma A.13, we have

F(ȟ1:li ) =
({

z ∈ Z |h1:li (z) > 0
}
∩ F(h1:li )

)
∪ Fli(h) (34)

=
({

z ∈ Z |h1:li (z) > 0
}
∩

⋃
k∈[l−1],j∈[dk]

Fkj (h)
)
∪ Fli(h), (35)

F(h1:l+1
ι ) =

dl⋃
i=1

({
z ∈ Z |h1:li (z) > 0

}
∩

⋃
k∈[l−1],j∈[dk]

Fkj (h)
)
∪ Fli(h) (36)

=
( dl⋃
i=1

{
z ∈ Z |h1:li (z) > 0

}
∩

⋃
k∈[l−1],j∈[dk]

Fkj (h)
)
∪

dl⋃
i=1

Fli(h). (37)

Since
⋃dl
i=1

{
z ∈ Z |h1:li (z) > 0

}
⊆ Z, we obtain

F(h1:l+1
ι ) ⊆

⋃
k∈[l−1],j∈[dk]

Fkj (h) ∪
⋃
j∈[dl]

Flj(h) =
⋃

k∈[l],j∈[dk]

Fkj (h). (38)

It remains to show the reverse inclusion; we do so by contradiction.

Suppose z̄ ∈
⋃
k∈[l],j∈[dk] F

k
j (h) \ F(h1:l+1

ι ), or equivalently

z̄ ∈
⋃

k∈[l−1],j∈[dk]

Fkj (h) ∩
(
Z \

⋃
i∈[dl]

{
z ∈ Z |h1:li (z) > 0

})
(39)

=
⋃

k∈[l−1],j∈[dk]

Fkj (h) ∩
⋂
i∈[dl]

{
z ∈ Z |h1:li (z) ≤ 0

}
. (40)

Because h is transparent, there exists i ∈ [dl] : h1:li (z̄) ≥ 0, so for this i we have h1:li (z̄) = 0.
However, by Lemma A.12, this implies z̄ ∈ Fli(h) ⊆ F(h1:l+1

ι ).

Lemma A.16. Let h : Z → R be a ReLU network. Then Fl+1
i (h) is a union of piece-wise hyper-

planes wrt. PZ(
⋃
k∈[l],j∈[dk] F

k
j (h)).

Proof. Since PZ(F(h1:l+1
i )) is the partition of the input space into the linear regions of h1:l+1

i , and
F(h1:l+1

i ) ⊆
⋃
k∈[l],j∈[dk] F

k
j (h) by Lemma A.15, the function h1:l+1

i is also linear on the regions of
PZ(

⋃
k∈[l],j∈[dk] F

k
j (h)). For any P ∈ PZ(

⋃
k∈[l],j∈[dk] F

k
j (h)), denote the slope and bias of h1:l+1

i

on P by w(P ), b(P ). Then

P ∩ Fl+1
i (h) = {z ∈ P |w(P )ᵀz + b(P ) = 0 (41)

and h1:l+1
i is positive in the neighbourhood of z}. (42)

The positivity condition guarantees that (w(P ), b(P )) 6= (0, 0), so P ∩ Fl+1
i is either an empty set

or a piece-wise hyperplane.

Corollary A.1. Let h : Z→ R be a ReLU network. Then the set
⋃
l∈[κ],i∈[dl] F

l
i(h) is a pwl. surface

of order at most κ. In particular, if h is general and transparent, then F(h) =
⋃
l∈[L−1],i∈[dl] F

l
i(h)

is a pwl. surface of order at most L− 1.

A.4 MAIN RESULT

Lemma A.17. For any bounded domain X and any architecture (d1, . . . , dL−1) with d0 ≥ d1 ≥
· · · ≥ dL−1 ≥ 2, there exists a nonempty open set of transparent ReLU networks h : X → R such
that for l ∈ [L− 1],

• dimZl = dl, and
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• the set F(hl:L|intZl−1) is a pwl. surface whose dependency graph contains dl directed paths
of length (L− 1− l) with distinct starting vertices.

Proof. We give an explicit construction; we first state it and then we prove its properties. For l = 1,
we choose the parameters (Wl,bl) as follows. Let P1 be some nonempty open convex subset of X,
and define

Wl
1 :=

{
(w, b) ∈ Rdl−1 × R

∣∣∣ inf
z∈Pl

wᵀz + b < 0 < sup
z∈Pl

wᵀz + b

}
. (43)

Since Pl has at least two elements, the strict separation theorem implies that Wl
1 is nonempty. It is

also open. We can therefore choose (Wl[1, :], bl[1]) from Wl
1, and define

Wl
2 := {(w, b) ∈Wl

1 |wᵀz + b > 0 for all z ∈ Zl

such that Wl[1, :]z + bl[1] ≤ 0}.
(44)

The set A :=
{
z ∈ conv clZl |Wl[1, :]z + bl[1] ≤ 0

}
is nonempty, convex and compact, and by

construction there exists z ∈ Pl \ A. Again, the strict separation theorem implies Wl
2 is nonempty.

It is also open by the boundedness of A. We then choose (Wl[2, :], bl[2]) from Wl
2, and define

Q̄ι , {z ∈ Pl |Wl[i, :]z + bl[i] ≥ 0 for all i ∈ [ι]}. (45)

Note that int Q̄2 is nonempty, open and convex. Also, there exist z1, z2 ∈ Q̄2 such that

Wl[i, :]zi + bl[i] = 0, (46)
Wl[j, :]zi + bl[j] > 0 for j 6= i. (47)

For i ∈ {3, . . . , dl}, we then choose (Wl[i, :], bl[i]) as follows. Let A := conv{z1, . . . , zi−1}
and let z ∈ int Q̄i−1 \ A. Such z exists because dim Q̄i−1 = dimPl = dl−1, and dimA ≤
i − 2 ≤ dl − 2 ≤ dl−1 − 2. By strict separation and boundedness, there exists a nonempty open
set of hyperplanes that strictly separate A and z. Let (Wl[i, :], bl[i]) be any of them, oriented
such that Wl[i, :]zj + bl[i] > 0 for j ∈ [i − 1]. Then denote by zi ∈ int Q̄i−1 any point that
satisfies Wl[i, :]zi + bl[i] = 0; it exists by convexity. Then int Q̄i is nonempty and convex, and the
construction for {i+ 1, . . . , dl} goes through.

For layers l ∈ {2, . . . , L− 1}, we use a similar construction as for l = 1. Denote

Pl := (Wl−1Pl−1 + bl−1) ∩ {z > 0}, (48)

P̄l := (Wl−1Pl−1 + bl−1) ∩ {z ≥ 0}. (49)

Pl is nonempty (because int Q̄dl−1
is nonempty), open (because Wl−1 is wide) and convex. We

assume Wl−1 is full-rank; this holds for all choices of Wl−1 except a closed zero-measure set. By
the construction of Q̄dl−1

, there exist z1, . . . , zdl−1
∈ Q̄dl−1

⊆ Pl−1 such that or i ∈ [dl−1],

Wl−1[i, :]zi + bl−1[i] = 0, (50)
Wl−1[j, :]zi + bl−1[j] > 0 for j 6= i. (51)

Denote their images z′i := Wl−1zi + bl−1. Then by openness, there exists a ball around each z′i
such that

Bε(z
′
i) ⊆ (Wl−1Pl−1 + bl−1) ∩ {z′[j] > 0 for j 6= i}, (52)

implying that each z′i has a dl−1-dimensional, relatively open neighbourhood Bε(z
′
i)∩{z′[i] = 0} ⊆

P̄l whose elements satisfy z′[i] = 0 and z′[j] > 0 for j 6= i. It follows that the set

Wl
1 :=

{
(w, b) ∈ Rdl−1 × R

∣∣∣ inf
z∈Pl

wᵀz + b < 0 < sup
z∈Pl

wᵀz + b, and

∀i ∈ [dl−1] ∃z ∈ P̄l : z[i] = 0, z[j] > 0 for j 6= i, and wᵀz + b = 0

}
(53)

contains a nonempty open subset. We can therefore choose (Wl[1, :], bl[1]) from Wl
1. For the choice

of (Wl[i, :], bl[i]) for i ∈ {2, . . . , dl}, we use the same procedure as in the first layer. Finally, choose
(WL, bL) arbitrarily.
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We will show that this construction satisfies the lemma. The networks are transparent because of
how we define Wl

2: for all x ∈ X and l ∈ [L − 1], either h1:l1 (x) > 0 or h1:l2 (x) > 0. Also,
dimZl = dl because Zl contains int Q̄dl , which is nonempty and open.

Now let l ∈ [L]. We can think of the function hl:L|intZl−1 as an (L − l + 1)-layer ReLU network
parameterised by (Wl,bl, . . . ,WL, bL). Because h is transparent, also hl:L|intZl−1 is transpar-
ent. Corollary A.1 then implies that S := F(hl:L|intZl−1) =

⋃
k∈[L−l],j∈[dk] F

k
j (hl:L|intZl−1) is

a pwl. surface. Let S =
⋃
k∈[L−l],j∈[nλ] H

k
j be its canonical representation, and let G denote its

dependency graph.

To find the required paths in G, we first identify some important vertices. For λ ∈ [L− l], denote

Z+
λ :=

{
z ∈ Pl |hl:l+k−1(z) > 0 for k ∈ [λ− 1]

}
. (54)

This set is nonempty and open because Pl+λ is nonempty and open. Next, for any unit (λ, ι),

Fλι (hl:L|intZl−1) ∩ Z+
λ = {z ∈ Pl |hl:l+λ−1ι (z) = 0,

hl:l+k−1(z) > 0 for k ∈ [λ− 1]}.
(55)

By the definition of Wl+λ−1
1 and the fact that hl:l+λ−1(Z+

λ ) = Pl+λ, the set A :=

Fλι (hl:L|intZl−1) ∩ Z+
λ is nonempty. Also, by the definition of {Pl′}l′ , hl:l+λ−1ι is in fact linear

on Z+
λ , so A is a hyperplane on Z+

λ . Therefore there exists a piece-wise hyperplane H
k(λ,ι)
j(λ,ι) from

the canonical representation of S that contains A; by Lemma A.11, all {Hk(λ,ι)
j(λ,ι)}λ,ι are distinct from

each other.

We now show thatG contains the edge Hk(λ,i)
j(λ,i) → H

k(λ+1,ι)
j(λ+1,ι) for λ ∈ [L− l−1] and all (i, ι). By the

definition of Wl+λ, there exists z̄ ∈ P̄l+λ such that z̄[i] = 0, z̄[j] > 0 for j 6= i, and Wl+λ[ι, :]z̄ +
bl+λ[ι] = 0. There also exists a ball Bε(z̄) ⊆ (Wl+λ−1Pl+λ−1 + bl+λ−1) ∩ {z[j] > 0 for j 6= i}.
Then because of how {Pl′}l′ are defined, there exists z̄′ ∈ Pl such that hl:l+λ−1(z̄′) = z̄, so it
satisfies

hl:l+λ−1i (z̄′) = 0, (56)

hl:l+k−1j (z̄′) > 0, for k ∈ [λ], (k, j) 6= (λ, i), (57)

hl:l+λι (z̄′) = 0. (58)

It follows that z̄′ ∈ Fλi (hl:L|intZl−1) ∩ Z+
λ ⊆ H

k(λ,i)
j(λ,i) . At the same time, the preimage

(hl:l+λ−1)−1(Bε(z̄)) is open by continuity, and contains z̄′. So there exists a ball Bε(z̄′) ⊆ Pl
such that all z′ ∈ Bε(z̄

′) satisfy

hl:l+k−1j (z′) > 0, for k ∈ [λ], (k, j) 6= (λ, i). (59)

On this ball, hl:l+λ−1i is linear, so the set A := Bε(z̄
′) ∩

{
hl:l+λ−1i (z′) > 0

}
is an open half-ball.

On A, hl:l+λι is linear as well, and the set
{
z′ |hl:l+λι (z′) = 0

}
intersects the center of the half-ball,

z̄′. Therefore there exists a sequence of points {z′n} ⊆ Pl such that z′n → z̄′ and

hl:l+k−1(z′) > 0, for k ∈ [λ], (60)

hl:l+λι (z′) = 0. (61)

We obtain that z̄′ ∈ cl(Fλ+1
ι (hl:L|intZl−1) ∩ Z+

λ+1) ⊆ clH
k(λ+1,ι)
j(λ+1,ι) , which implies

clH
k(λ,i)
j(λ,i) ∩ clH

k(λ+1,ι)
j(λ+1,ι) 6= ∅. (62)

It remains to show that k(λ, i) < k(λ+1, ι). Consider again the ball Bε(z̄′). By Lemma A.11, hl:l+λι

is a different linear function on Bε(z̄
′) ∩

{
hl:l+λ−1i (z′) > 0

}
and on Bε(z̄

′) ∩
{
hl:l+λ−1i (z′) < 0

}
.

Hence, Hk(λ+1,ι)
j(λ+1,ι) is not a piece-wise hyperplane wrt. any partition that does not include H

k(λ,i)
j(λ,i) .

We obtain that k(λ, i) < k(λ+ 1, ι), proving that G contains the edge H
k(λ,i)
j(λ,i) → H

k(λ+1,ι)
j(λ+1,ι) .

Finally, observe that the dl paths Hk(1,i)
j(1,i) → H

k(2,1)
j(2,1) → · · · → H

k(L−l,1)
j(L−l,1) have length (L − l − 1),

and distinct starting vertices. This proves the theorem.
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Lemma A.18. For all general ReLU networks h : Z → R, the following holds. Denote S =⋃
l∈[λ],i∈[dl] F

l
i(h) and let S =

⋃
k∈[κ],j∈[nk] H

k
j be the canonical representation of S. Then Hk

j ⊆
Fli(h) for some (l, i) with l ≥ k. Moreover, if the dependency graph of S contains a directed path of
length m starting at Hk

j , then l ≤ λ−m.

Proof. Because the representation is canonical, we have

Hk
j 6⊆ �k−1S ⊇

⋃
l∈[k−1],i∈[dl]

Fli(h), (63)

which implies Hk
j ⊆

⋃
l≥k,i F

l
i(h). By piece-wise linearity, we can write⋃

l≥k,i

Fli(h) =
⋃

l≥k,i,P

Fli(h) ∩ P =
⋃

l≥k,i,P

{
z ∈ P |wl

i(P ) · z + bli(P ) = 0
}
, (64)

where P runs over the linear regions of h1:li . Moreover, by the definition of Fli(h), all wl
i(P ) 6= 0.

Combined with Lemma A.11, we obtain that each nonempty set on the right-hand side of (64) is a
different hyperplane on an open set. Therefore there exists one for which Hk

j ⊆ Fli(h)∩P ⊆ Fli(h).

Now assume that the dependency graph of S contains a directed path of length m starting at Hk
j =:

Hk0
j0

; denote the path Hk0
j0
→ Hk1

j1
→ · · · → Hkm

jm
. By the first part of the lemma, we know that

Hkι
jι
⊆ Flιiι(h) for some lι. Let ι ∈ [m]; we will show that lι−1 < lι.

Because of the edge H
kι−1

jι−1
→ Hkι

jι
, we know that Hkι−1

jι−1
and clHkι

jι
intersect, and that Hkι

jι
is a

piece-wise hyperplane wrt. some partition P for which H
kι−1

jι−1
is a boundary. Let ẑ be any point

of intersection. By openness, there exists a ball Bε(ẑ) such that Hkι−1

jι−1
is a hyperplane on Bε(ẑ),

and Hkι
jι

is a hyperplane on one half-ball defined by Bε(ẑ) and H
kι−1

jι−1
. If it was the case that

lι−1 ≥ lι, then Flιiι(h) would be a hyperplane on Bε(ẑ), i.e. there would have to exist some piece-
wise hyperplane on the opposite half-ball as Hkι−1

jι−1
, but included in the same hyperplane. However,

by Lemma A.11, no two piece-wise hyperplanes in S are included in a single hyperplane, so we get
a contradiction.

Hence, we obtain l0 < l1 < · · · < lm ≤ λ, which yields l0 ≤ λ−m.

Lemma A.19. Let (w, b), (c, a) ∈ Rd × R and let F ⊆ Rd with dimF = d − 1. If wᵀz + b = 0
and cᵀz + a = 0 for all z ∈ F , then either (w, b) = (0, 0), (c, a) = (0, 0), or there exists
β ∈ R : (c, a) = β(w, b).

Proof. Since dimF = d − 1, there exist d affinely independent vectors f0, . . . , fd−1 in F . Hence
there are d − 1 linearly independent vectors v1 := f1 − f0, . . . , vd−1 := fd−1 − f0, such that
wᵀvi = cᵀvi = 0. In other words, both w and c lie in the orthogonal complement of the span
of v1, . . . ,vd−1. If w = 0, then necessarily b = 0, and similarly for (c, a). If w 6= 0 6= c, then
because the orthogonal complement is one-dimensional, there exists β ∈ R such that c = βw. Then
cᵀz + a− β(wᵀz + b) = a− βb = 0 and the lemma follows.

Theorem A.1. Consider a bounded domain X and any architecture (d1, . . . , dL−1) with d0 ≥ d1 ≥
· · · ≥ dL−1 ≥ 2. Let hθ : X → R be a general ReLU network satisfying Lemma A.17, and let
hη : X → R be any general ReLU network such that hθ(x) = hη(x) for all x ∈ X. Denote
η , (W′

1,b
′
1, . . . ,W

′
L, b
′
L). Then there exist permutation matrices P1, . . .PL−1, and positive-

entry diagonal matrices M1, . . . ,ML−1, such that

W1 = M1P1W
′
1, b1 = M1P1b

′
1,

Wl = MlPlW
′
lP
−1
l−1M

−1
l−1, bl = MlPlb

′
l, l ∈ {2, . . . , L− 1}, (65)

WL = W′
LP−1L−1M

−1
L−1, bL = b′L.
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Proof. First, notice that hη is transparent. To see this, observe that hθ is transparent, i.e.
rank(Iθl (x)) ≥ 1 for all l ∈ [L − 1] and x ∈ X. By Lemma A.10, ∇xhη(x) = ∇xhθ(x) 6= 0ᵀ,
implying that hη is transparent.

We proceed by induction. Let l = 1. Then we have

hl:Lθ |intZl−1
θ
≡ hθ ≡ hη ≡ hl:Lη |intZl−1

θ
(66)

which implies F(hl:Lθ |intZl−1
θ

) = F(hl:Lη |intZl−1
θ

). (For notational convenience, we will omit the
domain restriction for now.) Because both networks are general and transparent, Corollary A.1
implies that the set ⋃

k∈[L−l],j∈[dk]

Fkj (hl:Lθ ) = F(hl:Lθ ) = F(hl:Lη ) =
⋃

k∈[L−l],j∈[dk]

Fkj (hl:Lη ) (67)

is a pwl. surface of order at mostL−l. By Lemma A.17, its graph contains dl directed paths of length
(L − 1 − l) with distinct starting vertices. Denote these vertices H1, . . . ,Hdl . By Lemma A.18,
Hi ⊆ Fλι (hl:Lθ ) for some (λ, ι) with λ ≤ (L− l)− (L− 1− l) = 1. We thus obtain

⋃
i∈[dl] Hi ⊆⋃

i∈[dl] F
1
i (h

l:L
θ ), where on the left-hand side we have a union of dl hyperplanes, and on the right-

hand side we have a union of at most dl hyperplanes. It follows that
⋃
i∈[dl] Hi =

⋃
i∈[dl] F

1
i (h

l:L
θ ),

and by applying the same argument to hη , we get
⋃
i∈[dl] F

1
i (h

l:L
θ ) =

⋃
i∈[dl] F

1
i (h

l:L
η ). Therefore

there must exist a permutation π : [dl] → [dl] such that F1
i (h

l:L
θ ) = F1

π(i)(h
l:L
η ) for all i. Then by

Lemma A.19, there exist scalars m1, . . .mdl , such that

(Wl[i, :], bl[i]) = mi(W
′
l[π(i), :], b′l[π(i)]). (68)

We know that mi 6= 0 because the folds F1
i (h

l:L
θ ),F1

i (h
l:L
η ), are nonempty; otherwise

⋃
i∈[dl] Hi

could not be a union of dl hyperplanes. We have thus shown that there exists a permutation matrix
Pl ∈ Rdl×dl and a nonzero-entry diagonal matrix Ml ∈ Rdl×dl such that Wl = MlPlW

′
l and

bl = MlPlb
′
l.

Next, we show that the diagonal entries of Ml are positive. Let z−, z+ ∈ intZl−1θ be such that
Iθ(z−) and Iθ(z+) differ only in Iθl [i, i]. Wlog, let Iθl [i, i](z−) = 0 and Iθl [i, i](z+) = 1, and
denote the row span of Iθl (z−)Wl by W. Then

∇zh
l:L
θ (z−) = WLIθL−1(z−) · · ·Wl+1I

θ
l (z−)Wl ∈W,

∇zh
l:L
θ (z+) = WLIθL−1(z+) · · ·Wl+1I

θ
l (z+)Wl ∈ span(W ∪Wl[i, :]).

Since hθ is general and dl ≤ dl−1, the matrix Wl has full row rank. This means that the rows of Wl

form a basis, in which the representation of ∇zh
l:L
θ (z−) has one more zero coefficient compared

to ∇zh
l:L
θ (z+). In other words, for two points z−, z+ ∈ intZl−1θ whose indicators differ only in

Iθl [i, i], the point for which Iθl [i, i](z) = 0 is also the one for which∇zh
l:L
θ (z) has more zero coeffi-

cients when expressed in the row basis of Wl. Now, observe that if Iθ(z−) and Iθ(z+) differ only in
Iθl [i, i], then Iη(z−) and Iη(z+) differ only in Iηl [π(i), π(i)]. Because Wl = MlPlW

′
l, the number

of zero coefficients of∇zh
l:L
η (z−) = ∇zh

l:L
θ (z−) in the row basis of W′

l is the same as the number
of zero coefficients of ∇zh

l:L
θ (z−) in the row basis of Wl. It follows that Iηl [π(i), π(i)](z−) = 0

and Iηl [π(i), π(i)](z+) = 1. Hence, mi is positive.

For the inductive step, let l ∈ {2, . . . , L− 1}, and assume that there exist permutation matrices
P1, . . . ,Pl−1, and positive-entry diagonal matrices M1, . . . ,Ml−1, such that (65) holds up to layer
l − 1. Then h1:l−1θ ≡Ml−1Pl−1h

1:l−1
η . Since h1:Lθ ≡ h1:Lη , it follows that

hl:Lθ |intZl−1
θ
≡
(
hl:Lη ◦P−1l−1M

−1
l−1
)∣∣

intZl−1
θ

≡ hl:Lη̃ |intZl−1
θ
, (69)

where η̃ := (W′
lP
−1
l−1M

−1
l−1,b

′
l,W

′
l+1,b

′
l+1, . . . ,W

′
L, b
′
L). We can therefore apply the same ar-

gument to hl:Lθ |intZl−1
θ

and hl:Lη̃ |intZl−1
θ

as we presented above for the case l = 1. We obtain that

there exists a permutation matrix Pl ∈ Rdl×dl and a positive-entry diagonal matrix Ml ∈ Rdl×dl
such that

Wl = MlPlW
′
lP
−1
l−1M

−1
l−1, bl = MlPlb

′
l. (70)
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Finally, consider the last layer. We know that h1:L−1θ ≡ ML−1PL−1h
1:L−1
η , which implies hLθ ≡

hLη ◦ P−1L−1M
−1
L−1, i.e. hLθ and hLη ◦ P−1L−1M

−1
L−1 are identical linear functions supported on the

full-dimensional domain ZL−1θ . It follows that WL = W′
LP−1L−1M

−1
L−1 and bL = b′L.
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