<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>no.</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 05</td>
<td>Mon</td>
<td>1</td>
<td>A Hands-On Introduction</td>
</tr>
<tr>
<td>Oct 07</td>
<td>Wed</td>
<td>2</td>
<td>Bayesian Decision Theory, Generative Probabilistic Models</td>
</tr>
<tr>
<td>Oct 12</td>
<td>Mon</td>
<td>3</td>
<td>Discriminative Probabilistic Models</td>
</tr>
<tr>
<td>Oct 14</td>
<td>Wed</td>
<td>4</td>
<td>Maximum Margin Classifiers, Generalized Linear Models</td>
</tr>
<tr>
<td>Oct 19</td>
<td>Mon</td>
<td>5</td>
<td>Estimators; Overfitting/Underfitting, Regularization, Model Selection</td>
</tr>
<tr>
<td>Oct 21</td>
<td>Wed</td>
<td>6</td>
<td>Bias/Fairness, Domain Adaptation</td>
</tr>
<tr>
<td>Oct 26</td>
<td>Mon</td>
<td>-</td>
<td>no lecture (public holiday)</td>
</tr>
<tr>
<td>Oct 28</td>
<td>Wed</td>
<td>7</td>
<td>Learning Theory I</td>
</tr>
<tr>
<td>Nov 02</td>
<td>Mon</td>
<td>8</td>
<td>Learning Theory II</td>
</tr>
<tr>
<td>Nov 04</td>
<td>Wed</td>
<td>9</td>
<td>Deep Learning I</td>
</tr>
<tr>
<td>Nov 09</td>
<td>Mon</td>
<td>10</td>
<td>Deep Learning II</td>
</tr>
<tr>
<td>Nov 11</td>
<td>Wed</td>
<td>11</td>
<td>Unsupervised Learning</td>
</tr>
<tr>
<td>Nov 16</td>
<td>Mon</td>
<td>12</td>
<td>project presentations</td>
</tr>
<tr>
<td>Nov 18</td>
<td>Wed</td>
<td>13</td>
<td>buffer</td>
</tr>
</tbody>
</table>
In the real world, $p(x, y)$ is unknown, but we have a training set \mathcal{D}. At least 3 approaches:

Definition

Given a training set \mathcal{D}, we call it

- a **generative probabilistic approach**: if we use \mathcal{D} to build a model $\hat{p}(x, y)$ of $p(x, y)$, and then define

 $$c(x) := \arg\max_{y \in \mathcal{Y}} \hat{p}(x, y) \quad \text{or} \quad c_\ell(x) := \arg\min_{y \in \mathcal{Y}} \mathbb{E}_{\bar{y} \sim \hat{p}(x, \bar{y})} \ell(\bar{y}, y).$$

- a **discriminative probabilistic approach**: if we use \mathcal{D} to build a model $\hat{p}(y|x)$ of $p(y|x)$ and define

 $$g(x) := \arg\max_{y \in \mathcal{Y}} \hat{p}(y|x) \quad \text{or} \quad c_\ell(x) := \arg\min_{y \in \mathcal{Y}} \mathbb{E}_{\bar{y} \sim \hat{p}(\bar{y}|x)} \ell(\bar{y}, y).$$

- a **decision theoretic approach**: if we use \mathcal{D} to directly search for a classifier c.
Observation

Even easier than estimating $p(y|x)$ or $p(x,y)$ should be to just estimate the decision boundary between classes.
Let’s use \mathcal{D} to estimate a classifier $c : \mathcal{X} \rightarrow \mathcal{Y}$ directly.
Let’s use \mathcal{D} to estimate a classifier $c : \mathcal{X} \rightarrow \mathcal{Y}$ directly.

For a start, we fix

- $\mathcal{D} = \{(x^1, y^1), \ldots, (x^n, y^n)\}$,
- $\mathcal{Y} = \{+1, -1\}$,
- we look for classifiers with linear decision boundary.

Several of the classifiers we saw had linear decision boundaries:

- Perceptron
- Generative classifiers for Gaussian class-conditional densities with shared covariance matrix
- Logistic Regression

What’s the best linear classifier?
Maximum Margin Classifiers
Definition

Let
\[\mathcal{F} = \{ f : \mathbb{R}^d \to \mathbb{R} \text{ with } f(x) = b + w_1 x_1 + \cdots + w_d x_d = b + \langle w, x \rangle \} \]
be the set of linear (affine) function from \(\mathbb{R}^d \to \mathbb{R} \). For any \(f \in \mathcal{F} \),
- \(w \) is called weight vector,
- \(b \) is called bias term.

A classifier \(g : \mathcal{X} \to \mathcal{Y} \) is called linear, if it can be written as
\[g(x) = \text{sign } f(x) \]
for some \(f \in \mathcal{F} \).

Given a training set \(\mathcal{D} = \{(x^1, y^1), \ldots, (x^n, y^n)\} \sim p \), what’s the best \(f \) (and induced \(g \))?
A linear classifier, $g(x) = \text{sign}(w, x)$, with $b = 0$
A linear classifier $g(x) = \text{sign}(\langle w, x \rangle + b)$, with $b > 0$
Feature augmentation

The bias term is good for intuition, but annoying in analysis:

Useful trick: feature augmentation

Adding a constant feature allows us to avoid models with explicit bias term:

- instead of $x = (x^1, \ldots, x^d) \in \mathbb{R}^d$, use $\tilde{x} = (x^1, \ldots, x^d, 1) \in \mathbb{R}^{d+1}$
- for any $\tilde{w} \in \mathbb{R}^{d+1}$, think $\tilde{w} = (w, b)$ with $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$

Linear function in \mathbb{R}^{d+1}:

$$f(\tilde{x}) = \langle \tilde{w}, \tilde{x} \rangle = \sum_{i=1}^{d+1} \tilde{w}_i \tilde{x}_i = \sum_{i=1}^{d} \tilde{w}_i \tilde{x}_i + \tilde{w}_{d+1} \tilde{x}_{d+1} = \langle w, x \rangle + b$$

Linear classifier with bias in $\mathbb{R}^d \equiv$ linear classifier with no bias in \mathbb{R}^{d+1}

Augmenting with other (larger) values than 1 can make sense, see later...
Linear classifiers

Definition (Ad hoc)
We call a classifier, \(g \), correct (for a training set \(D \)), if it predicts the correct labels for all training examples:

\[
g(x^i) = y^i \quad \text{for } i = 1, \ldots, n.
\]

Example (Perceptron)
- if the Perceptron converges, the result is an correct classifier.
- any classifier with zero training error is correct.
Linear classifiers

Definition (Ad hoc)

We call a classifier, g, **correct** (for a training set \mathcal{D}), if it predicts the correct labels for all training examples:

$$g(x^i) = y^i \quad \text{for } i = 1, \ldots, n.$$

Example (Perceptron)

- if the *Perceptron* converges, the result is an **correct** classifier.
- any classifier with zero training error is **correct**.

Definition (Linear Separability)

A training set \mathcal{D} is called **linearly separable**, if it allows a correct linear classifier (i.e. the classes can be separated by a hyperplane).
A linearly separable dataset and a correct classifier
A linearly separable dataset and a correct classifier
A linearly separable dataset and a correct classifier
An incorrect classifier
Linear Classifiers

Definition (Ad hoc)

The **robustness** of a classifier g (with respect to D) is the largest amount, ρ, by which we can perturb the training samples without changing the predictions of g.

$$g(x^i + \epsilon) = g(x^i), \quad \text{for all } i = 1, \ldots, n.$$

for any $\epsilon \in \mathbb{R}^d$ with $\|\epsilon\| < \rho$.

Example

- constant classifier, e.g. $c(x) \equiv 1$: very robust ($\rho = \infty$), (but it is not *correct*, in the sense of the previous definition)
- robustness of the *Perceptron*: can be arbitrarily small (see Exercise...)
Robustness, ρ, of a linear classifier
Definition (Margin)

Let \(f(x) = \langle w, x \rangle + b \) define a correct linear classifier. The margin of \(f \) (with respect to \(D \)) is the largest amount by which the decision hyperplane in the direction of the weight vector or its negative without making the classifier incorrect.

Lemma

The margin of \(f \) is identical to the smallest distance of any point in \(D \) to the decision boundary. We can compute the margin of a linear classifier \(f = \langle w, x \rangle + b \) as

\[
\rho = \min_{i=1,...,n} \left| \frac{w}{\|w\|}, x^i \right| + b.
\]

Proof.

High school maths: distance between a point and a hyperplane in Hessian normal form.
Margin, ρ, of a linear classifier
Theorem

The robustness of a linear classifier function \(g(x) = \text{sign } f(x) \) with \(f(x) = \langle w, x \rangle \) is identical to the margin of \(f \).
Theorem

The robustness of a linear classifier function \(g(x) = \text{sign } f(x) \) with \(f(x) = \langle w, x \rangle \) is identical to the margin of \(f \).

Proof by Picture
Proof (blackboard). For any $i = 1, \ldots, n$ and any $\epsilon \in \mathbb{R}^d$

$$f(x^i + \epsilon) = \langle w, x^i + \epsilon \rangle = \langle w, x^i \rangle + \langle w, \epsilon \rangle = f(x^i) + \langle w, \epsilon \rangle,$$

so it follows (Cauchy-Schwarz inequality) that

$$f(x^i) - \|w\|\|\epsilon\| \leq f(x^i + \epsilon) \leq f(x^i) + \|w\|\|\epsilon\|.$$

Checking the cases $\epsilon = \pm \frac{\|\epsilon\|}{\|w\|}w$, we see that these inequalities are sharp.

To ensure $g(x^i + \epsilon) = g(x^i)$ for all training samples, $f(x^i)$ and $f(x^i + \epsilon)$ have the same sign for all ϵ, i.e. $|f(x^i)| \geq \|w\|\|\epsilon\|$ for $i = 1, \ldots, n$.

This inequality holds for all samples, so in particular it holds for the one of minimal score, and $\min_i |f(x^i)| = \min_i |\langle w, x^i \rangle| = \rho$.

\square
Theorem

Let \mathcal{D} be a linearly separable training set. Then the most robust, correct linear classifier (without bias term) is given by $g(x) = \text{sign}(\langle w^*, x \rangle)$ where w^* are the solution to

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2$$

subject to

$$y^i(\langle w, x^i \rangle) \geq 1, \quad \text{for } i = 1, \ldots, n.$$

Remark

- The classifier defined above is called **Maximum (Hard) Margin Classifier**, or **Hard-Margin Support Vector Machine (SVM)**.
- It is unique (follows from strictly convex optimization problem).
Proof.

1. All \(w \) that fulfill the inequalities yield *correct* classifiers.

2. Since \(\mathcal{D} \) is linearly separable, there exists some \(v \) with
 \[
 \text{sign}\langle v, x^i \rangle = y_i, \text{ i.e. } y_i\langle v, x^i \rangle \geq \gamma > 0.
 \]
 for \(\gamma = \min_i y_i\langle v, x^i \rangle \). So \(\tilde{v} = v / \gamma \), fulfills the inequalities and we see that the constraint set is at least not empty.
Proof.

1. All w that fulfill the inequalities yield correct classifiers.

2. Since \mathcal{D} is linearly separable, there exists some v with

$$\text{sign} \langle v, x^i \rangle = y_i, \quad \text{i.e.} \quad y_i \langle v, x^i \rangle \geq \gamma > 0.$$

for $\gamma = \min_i y_i \langle v, x^i \rangle$. So $\tilde{v} = v/\gamma$, fulfills the inequalities and we see that the constraint set is at least not empty.

3. Now we check (with $i = 1, \ldots, n$):

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 \quad \text{sb.t.} \quad y^i \langle w, x^i \rangle \geq 1$$

$$\Leftrightarrow \max_{w \in \mathbb{R}^d} \frac{1}{\|w\|} \quad \text{sb.t.} \quad y^i \langle w, x^i \rangle \geq 1$$

$$\Leftrightarrow \max_{\{w' : \|w'\|=1\}, \rho \in \mathbb{R}} \rho \quad \text{sb.t.} \quad y^i \langle \frac{w'}{\rho}, x^i \rangle \geq 1$$

$$\Leftrightarrow \max_{\{w' : \|w'\|=1\}, \rho \in \mathbb{R}} \rho \quad \text{sb.t.} \quad y^i \langle w', x^i \rangle \geq \rho$$

$$\Leftrightarrow \max_{\{w' : \|w'\|=1\}, \rho \in \mathbb{R}} \rho \quad \text{sb.t.} \quad |\langle w', x^i \rangle| \geq \rho \quad \text{and} \quad \text{sign} \langle w', x^i \rangle = y_i$$
Proof.

1. All w that fulfill the inequalities yield correct classifiers.

2. Since \mathcal{D} is linearly separable, there exists some v with

$$\text{sign} \langle v, x^i \rangle = y_i,$$

i.e. $y_i \langle v, x^i \rangle \geq \gamma > 0.$

for $\gamma = \min_i y_i \langle v, x^i \rangle$. So $\tilde{v} = v/\gamma$, fulfills the inequalities and we see that the constraint set is at least not empty.

3. Now we check (with $i = 1, \ldots, n$):

$$\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|^2 \quad \text{s.t.} \quad y^i \langle w, x^i \rangle \geq 1$$

$$\Leftrightarrow \max_{w \in \mathbb{R}^d} \frac{1}{\|w\|} \quad \text{s.t.} \quad y^i \langle w, x^i \rangle \geq 1$$

$$\Leftrightarrow \max_{\{w' : \|w'\| = 1\}, \rho \in \mathbb{R}} \rho \quad \text{s.t.} \quad y^i \langle \frac{w'}{\rho}, x^i \rangle \geq 1$$

$$\Leftrightarrow \max_{\{w' : \|w'\| = 1\}, \rho \in \mathbb{R}} \rho \quad \text{s.t.} \quad y^i \langle w', x^i \rangle \geq \rho$$

$$\Leftrightarrow \max_{\{w' : \|w'\| = 1\}, \rho \in \mathbb{R}} \rho \quad \text{s.t.} \quad \| \langle w', x^i \rangle \| \geq \rho \quad \text{and} \quad \text{sign} \langle w', x^i \rangle = y_i$$

maximal robustness

and correct
Non-Separable Training Sets

Observation (Not all training sets are linearly separable.)
Definition (Maximum Soft-Margin Classifier)

Let \mathcal{D} be a training set, not necessarily linearly separable. Let $C > 0$. Then the classifier $g(x) = \text{sign} \langle w^*, x \rangle + b$ where (w^*, b^*) are the solution to

$$
\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi^i
$$

subject to

$$
y^i(\langle w, x^i \rangle + b) \geq 1 - \xi^i, \quad \text{for } i = 1, \ldots, n.
$$

$$
\xi^i \geq 0, \quad \text{for } i = 1, \ldots, n.
$$

is called Maximum (Soft-)Margin Classifier or Linear Support Vector Machine.

The variables ξ_1, \ldots, ξ_n are called slack variables.
Theorem

The maximum soft-margin classifier exists and is unique for any $C > 0$.

Proof. optimization problem is strictly convex

Remark

The constant $C > 0$ is called regularization parameter.

It balances the wishes for robustness and for correctness

- $C \to 0$: mistakes don’t matter much, emphasis on short w
- $C \to \infty$: as few errors as possible, might not be robust

We’ll see more about this in the next lecture.
Sometimes, a soft margin SVM is better even for linearly separable datasets!
Lemma

Let \mathcal{D} be a training set, not necessarily linearly separable. Let $C > 0$. Then the maximum soft-margin classifier (=linear SVM) can also be computed as

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \max\{0, 1 - y^i(\langle w, x^i \rangle + b)\}$$

Proof: the original optimization problem is

$$\min_{w, b, \xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi^i \quad \text{sb.t.} \quad y^i(\langle w, x^i \rangle + b) \geq 1 - \xi^i, \quad \xi^i \geq 0, \quad \text{for } i = 1, \ldots, n.$$

We can determine the optimal values of ξ^i for $i = 1, \ldots, n$:

- they should be bigger or equal to 0 and to $1 - y^i(\langle w, x^i \rangle + b)$ (from the constraints)
- they should be as small as possible (because of the objective)
- in combination, we obtain $\xi_{i}^{\text{opt}} = \max\{0, 1 - y^i(\langle w, x^i \rangle + b)\}$

Pluggin this into the optimization yields the result.
Nonlinear Classifiers
Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

![Graph showing data points in two dimensions with a linear classifier decision boundary]
Nonlinear Classifiers

What, if a linear classifier is really not a good choice?

Change the data representation, e.g. Cartesian \rightarrow polar coordinates
Definition (Max-margin Generalized Linear Classifier)

Let $C > 0$. Assume a training set

$$D = \{(x^1, y^1), \ldots, (x^n, y^n)\} \subset \mathcal{X} \times \mathcal{Y}.$$

Let $\phi : \mathcal{X} \to \mathbb{R}^D$ be a feature map from \mathcal{X} into a feature space \mathbb{R}^D.

Then we can form a new training set

$$D^\phi = \{(\phi(x^1), y^1), \ldots, (\phi(x^n), y^n)\} \subset \mathbb{R}^D \times \mathcal{Y}.$$

The maximum-(soft)-margin linear classifier in \mathbb{R}^D,

$$g(x) = \text{sign}[\langle w, \phi(x) \rangle_{\mathbb{R}^D} + b]$$

for $w \in \mathbb{R}^D$ and $b \in \mathbb{R}$ is called **max-margin generalized linear classifier**.

It is still linear w.r.t w, but (in general) nonlinear with respect to x.
Example (Polar coordinates)

Left: dataset \mathcal{D} for which no good linear classifier exists.
Right: dataset \mathcal{D}^{ϕ} for $\phi : \mathcal{X} \to \mathbb{R}^D$ with $\mathcal{X} = \mathbb{R}^2$ and $\mathbb{R}^D = \mathbb{R}^2$

$$\phi(x, y) = (\sqrt{x^2 + y^2}, \arctan\frac{y}{x}) \quad (\text{and } \phi(0, 0) = (0, 0))$$
Example (Polar coordinates)

Left: dataset \mathcal{D} for which no good linear classifier exists.
Right: dataset \mathcal{D}^ϕ for $\phi : \mathcal{X} \to \mathbb{R}^D$ with $\mathcal{X} = \mathbb{R}^2$ and $\mathbb{R}^D = \mathbb{R}^2$

$$\phi(x, y) = (\sqrt{x^2 + y^2}, \arctan \frac{y}{x}) \quad \text{(and } \phi(0, 0) = (0, 0))$$
Other popular feature mappings, ϕ

Example (d-th degree polynomials)

$\phi : (x_1, \ldots, x_n) \mapsto (1, x_1, \ldots, x_n, x_1^2, \ldots, x_n^2, x_1^2, x_1 x_2, \ldots, x_n^2, \ldots, x_n^d)$

Resulting classifier: d-th degree polynomial in x. $g(x) = \text{sign } f(x)$ with

$$f(x) = \langle w, \phi(x) \rangle = \sum_j w_j \phi(x)_j = a + \sum_i b_i x_i + \sum_{ij} c_{ij} x_i x_j + \ldots$$

Example (Distance map)

For a set of prototype $p_1, \ldots, p_N \in \mathcal{X}$:

$$\phi : \vec{x} \mapsto \left(e^{-\|\vec{x} - \vec{p}_1\|^2}, \ldots, e^{-\|\vec{x} - \vec{p}_N\|^2} \right)$$

Classifier: combine weights from close enough prototypes

$$g(x) = \text{sign}\langle w, \phi(x) \rangle = \text{sign } \sum_{i=1}^n a_i e^{-\|\vec{x} - \vec{p}_i\|^2}. $$
Other popular feature mappings, ϕ

Example (Pre-trained deep network)

The internet is full of already trained (deep) neural networks that one can download, e.g. trained on ImageNet for image classification.

Idea: use initial segment of network as feature extractor for other data:

Beyond Vectors as Inputs
Beyond Vectors as Inputs

Linear models, such as

\[f(x) = \langle w, x \rangle + b \]

only makes sense if data \(x \in \mathcal{X} \) are vectors of equal dimension, \(x \in \mathbb{R}^d \).

Real data

- can be categorical,
- can be structured,
- can be of variable size.
Beyond Vectors as Inputs

Linear models, such as

\[f(x) = \langle w, x \rangle + b \]

only makes sense if data \(x \in \mathcal{X} \) are vectors of equal dimension, \(x \in \mathbb{R}^d \).

Real data

- can be categorical,
- can be structured,
- can be of variable size.

Generalized linear models,

\[f(x) = \langle w, \phi(x) \rangle + b \]

can make sense for other input sets \(\mathcal{X} \), if we define a suitable feature map \(\phi : \mathcal{X} \rightarrow \mathcal{F} \).
\[\mathcal{X} = \{ \text{red}, \text{green}, \text{blue} \} \]

"One-hot encoding": encode by vector of binary indicator variables, \(\phi : \mathcal{X} \rightarrow \mathbb{R}^{\mid \mathcal{X} \mid} \),

- \(\phi(\text{red}) = (1, 0, 0), \quad \phi(\text{green}) = (0, 1, 0), \quad \phi(\text{blue}) = (0, 0, 1) \)

Caveat

Don't use:

- \(\text{red} \mapsto 1 \)
- \(\text{green} \mapsto 2 \)
- \(\text{blue} \mapsto 3 \)

That would introduce spurious relations, such as \(\text{green} + \text{red} = \text{blue} \)?!?

One-hot encoding works well even for large \(\mathcal{X} \), e.g. all English words, when using the right data structures (e.g. sparse vectors/matrices).
Categorical data

\[\mathcal{X} = \{ \text{red}, \text{green}, \text{blue} \} \]

"One-hot encoding": encode by vector of binary indicator variables, \(\phi : \mathcal{X} \to \mathbb{R}^{|\mathcal{X}|} \),

- \(\phi(\text{red}) = (1, 0, 0) \), \(\phi(\text{green}) = (0, 1, 0) \), \(\phi(\text{blue}) = (0, 0, 1) \)

Caveat

Don't use: \(\text{red} \mapsto 1 \) \(\text{green} \mapsto 2 \) \(\text{blue} \mapsto 3 \)

That would introduce spurious relations, such as

\[\text{green} + \text{red} = \text{blue} \] ??

One-hot encoding works well even for large \(\mathcal{X} \), e.g. all English words, when using the right data structures (e.g. sparse vectors/matrices).
Ordinal data

\[\mathcal{X} = \{\text{poor, fair, good, very good, excellent}\} \]

Best treatment depends on the situation

- working with distances?
 \[\phi(\text{poor}) = 1 \quad \phi(\text{fair}) = 2 \quad \ldots \quad \phi(\text{excellent}) = 5 \]
 might work well.

- in other situations, one-hot might work better.

- if values derive from a continuous quantity by quantization
 - \(\leq 60\%: \text{poor} \quad 61-70\%: \text{good} \quad \ldots \quad \geq 91-100\%: \text{excellent} \)
 it might make sense to reflect those
 \[\phi(\text{poor}) = 0.55 \quad \phi(\text{fair}) = 0.65 \quad \ldots \quad \phi(\text{excellent}) = 0.95 \]
Example: $\mathcal{X} = \{\text{all English words}\}$, task-specific encoding: "word vectors"

- represent each word w by a vector $\phi(w) \in \mathbb{R}^d$ (e.g. $25 \leq d \leq 300$)
- similar vectors encode words of similar meaning (more or less)

<table>
<thead>
<tr>
<th></th>
<th>tiger</th>
<th>lion</th>
<th>pion</th>
<th>quark</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiger</td>
<td>-0.70</td>
<td>-0.34</td>
<td>0.44</td>
<td>-0.38</td>
</tr>
<tr>
<td>lion</td>
<td>-0.89</td>
<td>-0.56</td>
<td>-0.37</td>
<td>0.76</td>
</tr>
<tr>
<td>pion</td>
<td>-0.53</td>
<td>-0.62</td>
<td>-0.13</td>
<td>0.55</td>
</tr>
<tr>
<td>quark</td>
<td>-0.53</td>
<td>-0.55</td>
<td>0.17</td>
<td>-0.67</td>
</tr>
</tbody>
</table>

$\phi(\text{tiger}) \approx \phi(\text{lion}) \quad \phi(\text{pion}) \not\approx \phi(\text{lion})$, etc.

Euclidean distances, $\|\phi(w_i) - \phi(w_j)\|$

<table>
<thead>
<tr>
<th></th>
<th>tiger</th>
<th>lion</th>
<th>pion</th>
<th>quark</th>
</tr>
</thead>
<tbody>
<tr>
<td>tiger</td>
<td>0</td>
<td>2.6</td>
<td>4.6</td>
<td>4.0</td>
</tr>
<tr>
<td>lion</td>
<td>2.6</td>
<td>0</td>
<td>4.3</td>
<td>4.6</td>
</tr>
<tr>
<td>pion</td>
<td>4.6</td>
<td>4.3</td>
<td>0</td>
<td>2.8</td>
</tr>
<tr>
<td>quark</td>
<td>4.0</td>
<td>4.6</td>
<td>2.8</td>
<td>0</td>
</tr>
</tbody>
</table>

Vectors that have been learned automatically (unsupervised) from large corpora (e.g. Wikipedia) are available for download, e.g. https://github.com/3Top/word2vec-api#where-to-get-a-pretrained-models
Variable size data: text and strings

Given: a text fragment or short sentence $W = "w_1 \ w_2 \ldots \ w_k"$.

Easiest option: average individual representations

$$\Phi(W) = \frac{1}{k} \sum_{i=1}^{k} \phi(w_i)$$

for a word representation ϕ.

- linear function of Φ is average of linear functions on ϕ:

$$w^\top \Phi(W) = w^\top (\frac{1}{k} \sum_i \phi(w_i)) = \frac{1}{k} \sum_i w^\top \phi(w_i)$$

- advantage: very simple
- disadvantage: mixes words together, not really suitable for long texts
Variable size data: text and strings

Example: \(\mathcal{X} = \{ \text{arbitrary lengths text documents} \} \)

Task-specific encoding, \(x \mapsto \phi(x) \), e.g.,

- create a dictionary of all possible words, \(w_1, \ldots, w_L \)
- represent \(x \) by histogram of word occurrences

\[
x \mapsto (h_1, \ldots, h_L) \in \mathbb{R}^L \quad \text{"bag-of-words" representation}
\]

where \(h_i \) counts how often word \(w_i \) occurs in \(x \) (absolute or relative)
Variable size data: text and strings

Example: \(\mathcal{X} = \{ \text{arbitrary lengths text documents} \} \)

Task-specific encoding, \(x \mapsto \phi(x) \), e.g.,

- create a dictionary of all possible words, \(w_1, \ldots, w_L \)
- represent \(x \) by histogram of word occurrences

\[
x \mapsto (h_1, \ldots, h_L) \in \mathbb{R}^L \quad \text{"bag-of-words" representation}
\]

where \(h_i \) counts how often word \(w_i \) occurs in \(x \) (absolute or relative)

Include domain-knowledge if possible, e.g. stop-words

- ignore words a priori known not to be useful for the task at hand:

 a an as at be ... the ... you
Variable size data: text and strings

Given: a set \(D = \{d_1, d_2, \ldots, d_N\} \) of variable length documents.

tf-idf: term frequency – inverse document frequency

\[
\text{tfidf}(t, d) = \text{tf}(t, d) \times \text{idf}(t)
\]

- **term frequency** \(\text{tf}(t, d) \): how frequent is term \(t \) in document \(d \)?
 \[
 \text{tf}(t, d) = \text{raw count of how often } t \text{ occurs in } d
 \]

- **inverse document frequency** \(\text{idf}(t) \): in how many documents does the term occur?
 \[
 \text{idf}(t, d) = \log \frac{N}{1 + n_t} \quad \text{for } n_t = |\{d \in D : t \in d\}| \text{ and } N = |D|.
 \]

Many variants: normalization, boolean or logarithmic tf, constant idf (unweighted), \ldots
More powerful: count not just terms but short fragments: \textit{n-grams}

- \(x_i = \text{CTCCTGACTTTTCTCGCTTGGTGGTGTGAGTGGACCTCCCAGGCAGTGCCGGGCCCCTCATAGGAGGG} \)
- count A,C,G,T: \(\phi_1(x_i) = (9, 22, 22, 17) \in \mathbb{R}^4 \)
- count AA,AC,...,TT: \(\phi_2(x_i) = (0, 2, 6, 1, 3, \ldots, 4, 1, 5, 6, 3) \in \mathbb{R}^{16} \)
- count AAA,...,TTT: \(\phi_3(x_i) = (0, 0, 0, 0, 0, 1, 0, 1, \ldots, 1, 2, 2) \in \mathbb{R}^{64} \)
- etc.

fun demo: https://books.google.com/ngrams

data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
Variable size data: graphs

$$x_i =$$

Possible feature map: count characteristic patterns, e.g. subgraphs

\[
\phi(x_i) = \left(\ldots, 7_{\text{a)}, 6_{\text{b), 6_{\text{c), 1}_{\text{d),}} \ldots} \right)
\]

Many more in application-dependent literature.
From Binary to Multi-class Classification
Classification problems with M classes:

- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\}$,
- Task: learn a prediction function $f : \mathcal{X} \rightarrow \{1, \ldots, M\}$.

One-versus-rest construction:

- train one binary classifier $g_c : \mathcal{X} \rightarrow \mathbb{R}$ for each class c:
 - all samples with class label c are positive examples
 - all other samples are negative examples
- classify by finding maximal response $f(x) = \text{argmax}_{c=1, \ldots, M} g_c(x)$

Advantage: easy to implement, parallel, works well in practice

Disadvantage: with many classes, training sets become unbalanced.

no explicit calibration of scores between different g_c
Classification problems with M classes:
- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\}$,
- Task: learn a prediction function $f : \mathcal{X} \rightarrow \{1, \ldots, M\}$.

One-versus-rest construction:
- train one binary classifier $g_c : \mathcal{X} \rightarrow \mathbb{R}$ for each class c:
 - all samples with class label c are positive examples
 - all other samples are negative examples
- classify by finding maximal response

$$f(x) = \arg\max_{c=1,\ldots,M} g_c(x)$$

Advantage: easy to implement, parallel, works well in practice

Disadvantage: with many classes, training sets become unbalanced. no explicit calibration of scores between different g_c
Multiclass Classification — All-versus-all reduction

Classification problems with M classes:

- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\}$,
- Task: learn a prediction function $f : \mathcal{X} \rightarrow \{1, \ldots, M\}$.

All-versus-all construction:

- train one classifier, $g_{ij} : \mathcal{X} \rightarrow \mathbb{R}$, for each pair of classes $1 \leq i < j \leq M$, in total $m(m-1)/2$ prediction functions
- classify by voting $f(x) = \text{argmax}_{m=1,\ldots,M} \# \{i \in \{1, \ldots, M\} : g_{m,i}(x) > 0\}$,

(writing $g_{j,i} = -g_{i,j}$ for $j > i$ and $g_{j,j} = 0$)

Advantage: small and balanced training problems, parallel, works well.

Disadvantage: number of classifiers grows quadratically in classes.
Multiclass Classification – All-versus-all reduction

Classification problems with M classes:

- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\}$,
- Task: learn a prediction function $f : \mathcal{X} \rightarrow \{1, \ldots, M\}$.

All-versus-all construction:

- train one classifier, $g_{ij} : \mathcal{X} \rightarrow \mathbb{R}$, for each pair of classes $1 \leq i < j \leq M$, in total $m(m-1)/2$ prediction functions
- classify by voting

$$f(x) = \arg\max_{m=1,\ldots,M} \#\{i \in \{1, \ldots, M\} : g_{m,i}(x) > 0\},$$

(writing $g_{j,i} = -g_{i,j}$ for $j > i$ and $g_{j,j} = 0$)

Advantage: small and balanced training problems, parallel, works well.

Disadvantage: number of classifiers grows quadratically in classes.
Multiclass Classification – Hierarchical

Classification problems with M classes:
- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\}$,
- Task: learn a prediction function $f : \mathcal{X} \rightarrow \{1, \ldots, M\}$.

Hierarchical (tree) construction:
- construct binary tree with classes at leaves
- learn one classifier for each decision

Advantage: at most $\lceil \log_2 M \rceil$ classifier evaluation at test time

Disadvantage: not parallel, not robust to mistakes at any stage
Classification problems with M classes:

- Training samples $\{x^1, \ldots, x^n\} \subset \mathcal{X}$,
- Training labels $\{y^1, \ldots, y^n\} \subset \{1, \ldots, M\}$,
- Task: learn a prediction function $f : \mathcal{X} \rightarrow \{1, \ldots, M\}$.

Define a binary codeword for each class

- one classifier for codeword entry
- classify by comparing predictions to code words (exact or in some norm)

Advantage: parallel, trade off between speed and robustness

Disadvantage: optimal code design is NP-hard
Many different options for multi-class to binary reduction:

- One-versus-Rest
- One-versus-One
- Hierarchical (fixed or learned)
- Error-correcting output codes (ECOC)
- ...

Hot topic in the 2000s: which is the best one?
Many different options for multi-class to binary reduction:

- One-versus-Rest
- One-versus-One
- Hierarchical (fixed or learned)
- Error-correcting output codes (ECOC)
- ...

Hot topic in the 2000s: which is the best one?

Answer: None (or all of them)!

- there’s dozens of studies, they all disagree
- use whatever is available, or best fits the target application
- to implement your own, One-versus-Rest is most popular, since it’s the simplest