Probabilistic Graphical Models
Belief Networks
Example: modeling dependent events

- Mr. Holmes leaves his house
- He observes that the lawn in front of his house is wet.
- This can have two reasons:
 - he left the sprinkler turned on,
 - it rained during the night.
- Without any further information the probability of both events is increased.
Example: modeling dependent events

- Mr. Holmes leaves his house
- He observes that the lawn in front of his house is wet.
- This can have two reasons:
 - he left the sprinkler turned on,
 - it rained during the night.
- Without any further information the probability of both events is increased.
- Now he also observes that his neighbor’s lawn is also wet.
 - This raises the probability that it has rained and it lowers the probability that he left his sprinkler on.
Example: modeling dependent events

- Mr. Holmes leaves his house
- He observes that the lawn in front of his house is wet.
- This can have two reasons:
 - he left the sprinkler turned on,
 - or
 - it rained during the night.
- Without any further information the probability of both events is increased.
- Now he also observes that his neighbor’s lawn is also wet.
 - This raises the probability that it has rained
 - and it lowers the probability that he left his sprinkler on.

Holmes knows that our knowledge about events influences our knowledge about other events. How can we teach the computer to be as smart?
Let’s formalize: there are four random variables

- $R \in \{0, 1\}$, $R = 1$ means it has been **Raining**
- $S \in \{0, 1\}$, $S = 1$ means the **Sprinkler** was left on
- $N \in \{0, 1\}$, $N = 1$ means **Neighbours lawn** is wet
- $H \in \{0, 1\}$, $H = 1$ means **Holmes lawn** is wet

All of these carry information about each other \rightarrow they are dependent
Example continued

- Let’s formalize: there are four random variables
 - $R \in \{0, 1\}$, $R = 1$ means it has been Raining
 - $S \in \{0, 1\}$, $S = 1$ means the Sprinkler was left on
 - $N \in \{0, 1\}$, $N = 1$ means Neighbours lawn is wet
 - $H \in \{0, 1\}$, $H = 1$ means Holmes lawn is wet

 All of these carry information about each other \rightarrow they are dependent

- How many states to be specified for their joint distribution?

 $$(R, S, N, H) \in \{0, 1\} \times \{0, 1\} \times \{0, 1\} \times \{0, 1\}$$

 has $2^4 = 16$ states

 $p(R, S, N, H)$ has 15 degrees of freedom (one less than states because of normalization)
Let's formalize: there are four random variables

- $R \in \{0, 1\}$, $R = 1$ means it has been raining
- $S \in \{0, 1\}$, $S = 1$ means the sprinkler was left on
- $N \in \{0, 1\}$, $N = 1$ means neighbours lawn is wet
- $H \in \{0, 1\}$, $H = 1$ means Holmes lawn is wet

All of these carry information about each other → they are dependent

How many states to be specified for their joint distribution?

$$(R, S, N, H) \in \{0, 1\} \times \{0, 1\} \times \{0, 1\} \times \{0, 1\} \text{ has } 2^4 = 16 \text{ states}$$

$p(R, S, N, H)$ has 15 degrees of freedom (one less than states because of normalization)

Maybe we can save something by a different parameterization?

$$p(R, S, N, H) = p(H | R, S, N)p(N | R, S)p(R | S)p(S)$$
Example continued

- Let’s formalize: there are four random variables
 - $R \in \{0, 1\}$, $R = 1$ means it has been Raining
 - $S \in \{0, 1\}$, $S = 1$ means the Sprinkler was left on
 - $N \in \{0, 1\}$, $N = 1$ means Neighbours lawn is wet
 - $H \in \{0, 1\}$, $H = 1$ means Holmes lawn is wet

All of these carry information about each other \rightarrow they are dependent

- How many states to be specified for their joint distribution?

 $$(R, S, N, H) \in \{0, 1\} \times \{0, 1\} \times \{0, 1\} \times \{0, 1\} \text{ has } 2^4 = 16 \text{ states}$$

 $p(R, S, N, H)$ has 15 degrees of freedom (one less than states because of normalization)

- Maybe we can save something by a different parameterization?

 $$p(R, S, N, H) = \underbrace{p(H \mid R, S, N)}_{2^3 = 8} \underbrace{p(N \mid R, S)}_{2^2 = 4} \underbrace{p(R \mid S)}_{2} \underbrace{p(S)}_{1}$$

 still $8 + 4 + 2 + 1 = 15$ values needed
Example – Conditional Independence

Holmes grass, Neighbours grass, Rain, Sprinkler

- As modeler of this problem we have prior knowledge: the dependencies / independencies between variables
Example – Conditional Independence

Holmes grass, Neighbours grass, Rain, Sprinkler

- As modeler of this problem we have prior knowledge: the dependencies / independencies between variables
- \(p(R \mid S) = p(R) \)
Example – Conditional Independence

Holmes grass, Neighbours grass, Rain, Sprinkler

- As modeler of this problem we have prior knowledge: the dependencies / independencies between variables
 - \(p(R | S) = p(R) \)
 - \(p(N | R, S) = p(N | R) \)
Example – Conditional Independence

Holmes grass, Neighbours grass, Rain, Sprinkler

- As modeler of this problem we have prior knowledge: the dependencies / independencies between variables
 - $p(R \mid S) = p(R)$
 - $p(N \mid R, S) = p(N \mid R)$
 - $p(H \mid R, S, N) = p(H \mid R, S)$

In effect our model becomes

$$p(R, S, N, H) = p(H \mid R, S) \cdot p(N \mid R) \cdot p(R \mid S) \cdot p(S) = p(H \mid R, S) \cdot p(N \mid R) \cdot p(R) \cdot p(S)$$

- How many degrees of freedom?

Knowing (conditional) independencies can save us space/work!
Example – Conditional Independence

Holmes grass, Neighbours grass, Rain, Sprinkler

- As modeler of this problem we have prior knowledge: the dependencies / independencies between variables
- \(p(R \mid S) = p(R) \)
- \(p(N \mid R, S) = p(N \mid R) \)
- \(p(H \mid R, S, N) = p(H \mid R, S) \)
- In effect our model becomes

\[
p(R, S, N, H) = p(H \mid R, S, N)p(N \mid R, S)p(R \mid S)p(S) \\
= p(H \mid R, S)p(N \mid R)p(R)p(S)
\]

- How many degrees of freedom?
Knowing (conditional) independencies can save us space/work!
Example – Conditional Independence

Holmes grass, Neighbours grass, Rain, Sprinkler

- As modeler of this problem we have prior knowledge: the dependencies / independencies between variables
 - $p(R | S) = p(R)$
 - $p(N | R, S) = p(N | R)$
 - $p(H | R, S, N) = p(H | R, S)$
- In effect our model becomes

 $$p(R, S, N, H) = p(H | R, S, N)p(N | R, S)p(R | S)p(S)$$

 $$= p(H | R, S)p(N | R)p(R)p(S)$$

- How many degrees of freedom?
Example – Conditional Independence

Holmes grass, Neighbours grass, Rain, Sprinkler

- As modeler of this problem we have prior knowledge:
 the dependencies / independencies between variables

- $p(R | S) = p(R)$
- $p(N | R, S) = p(N | R)$
- $p(H | R, S, N) = p(H | R, S)$
- In effect our model becomes

$$
p(R, S, N, H) = p(H | R, S, N)p(N | R, S)p(R | S)p(S)$$

$$
= p(H | R, S) p(N | R) p(R) p(S)
$$

- How many degrees of freedom? 8
Example – Conditional Independence

Holmes grass, Neighbours grass, Rain, Sprinkler

- As modeler of this problem we have prior knowledge:
 the dependencies / independencies between variables

 \[p(R \mid S) = p(R) \]

 \[p(N \mid R, S) = p(N \mid R) \]

 \[p(H \mid R, S, N) = p(H \mid R, S) \]

 - In effect our model becomes

 \[
p(R, S, N, H) = p(H \mid R, S, N)p(N \mid R, S)p(R \mid S)p(S) \\
 = p(H \mid R, S)p(N \mid R)p(R)p(S)
 \]

 - How many degrees of freedom? 8

 Knowing (conditional) independencies can save us space/work!
Example – Inference

Holmes grass, Neighbours grass, Rain, Sprinkler

From the joint probabilities $p(R, S, N, H)$ we can answer all kind of questions.

Let’s fix some values for the conditional probability table (CPT)

\[
\begin{align*}
p(R = 1) &= 0.2, \quad p(S = 1) = 0.1 \\
p(N = 1 \mid R = 0) &= 0.2, \quad p(N = 1 \mid R = 1) = 1 \\
p(H = 1 \mid R = 0, S = 0) &= 0, \quad p(H = 1 \mid R = 0, S = 1) = 0.9 \\
p(H = 1 \mid R = 1, S = 0) &= 1, \quad p(H = 1 \mid R = 1, S = 1) = 1
\end{align*}
\]
Example – Inference

Holmes grass, Neighbours grass, Rain, Sprinkler

<table>
<thead>
<tr>
<th>R</th>
<th>S</th>
<th>N</th>
<th>H</th>
<th>p(H,N,R,S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5760</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.0000</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.1440</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.0000</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.0064</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.0576</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.0016</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.0144</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.1800</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.0200</td>
</tr>
</tbody>
</table>

Table of joint probabilities $p(R, S, N, H)$:
Example – Inference

Holmes grass, Neighbours grass, Rain, Sprinkler

- What is the probability . . . that Holmes’ leaves his sprinkler on (in general)?

\[
p(S = 1) = \sum_{R \in \{0,1\}, N \in \{0,1\}, H \in \{0,1\}} p(R, S = 1, N, H) = 0.1
\]
Example – Inference

 Holmes grass, Neighbours grass, Rain, Sprinkler

- What is the probability . . . that Holmes’ leaves his sprinkler on (in general)?
 \[
p(S = 1) = \sum_{R \in \{0,1\}, N \in \{0,1\}, H \in \{0,1\}} p(R, S = 1, N, H) = 0.1
\]

- . . . that Holmes’ lawn is wet but his neighbor’s is not?
 \[
p(N = 0, H = 1) = \sum_{R, S} p(R, S, N = 0, H = 1) = 0.0576
\]
Holmes grass, Neighbours grass, Rain, Sprinkler

▶ What is the probability . . . that Holmes’ leaves his sprinkler on (in general)?

\[p(S = 1) = \sum_{R \in \{0,1\}, N \in \{0,1\}, H \in \{0,1\}} p(R, S = 1, N, H) = 0.1 \]

▶ . . . that Holmes’ lawn is wet but his neighbor’s is not?

\[p(N = 0, H = 1) = \sum_{R,S} p(R, S, N = 0, H = 1) = 0.0576 \]

▶ . . . that Holmes’ sprinkler was on, given that his lawns is wet?

\[p(S = 1|H = 1) = \frac{p(S = 1, H = 1)}{p(H = 1)} = \frac{\sum_{R,N} p(R, S = 1, N, H = 1)}{\sum_{R,S,N} p(R, S, N, H = 1)} = \frac{0.092}{0.272} = 0.3382 \]
Example – Inference

Holmes grass, Neighbours grass, Rain, Sprinkler

- What is the probability . . . that Holmes’ leaves his sprinkler on (in general)?

\[p(S = 1) = \sum_{R \in \{0,1\}, N \in \{0,1\}, H \in \{0,1\}} p(R, S = 1, N, H) = 0.1 \]

- . . . that Holmes’ lawn is wet but his neighbor’s is not?

\[p(N = 0, H = 1) = \sum_{R,S} p(R, S, N = 0, H = 1) = 0.0576 \]

- . . . that Holmes’ sprinkler was on, given that his lawns is wet?

\[p(S = 1|H = 1) = \frac{p(S = 1, H = 1)}{p(H = 1)} = \frac{\sum_{R,N} p(R, S = 1, N, H = 1)}{\sum_{R,S,N} p(R, S, N, H = 1)} = \frac{0.092}{0.272} = 0.3382 \]

- . . . that Holmes’ sprinkler was on, given that both lawns are wet?

\[p(S = 1|N = 1, H = 1) = \frac{p(S = 1, H = 1, N = 1)}{p(H = 1, N = 1)} = \cdots = 0.1604 \]
This example as a Belief Network

Holmes grass, Neighbours grass, Rain, Sprinkler

A directed graphical model or belief network (also: Bayesian network) is a way to graphically express how random variables interact with each other:

- random variables are circles
- observed random variables are shaded
This example as a Belief Network

Holmes grass, Neighbours grass, Rain, Sprinkler

A directed graphical model or belief network (also: Bayesian network) is a way to graphically express how random variables interact with each other:

- random variables are circles
- observed random variables are shaded
 - observing Holmes’ wet grass
Belief Networks
Real World Examples
Conditional Independence

This example as a Belief Network

Holmes grass, Neighbours grass, Rain, Sprinkler

A directed graphical model or belief network (also: Bayesian network) is a way to graphically express how random variables interact with each other:

- random variables are circles
- observed random variables are shaded
 - observing Holmes’ wet grass
 - also observing the neighbour’s wet grass
- arrows encode a form of conditional dependence (later...)
A belief network specifies a distribution of the form

\[p(x_1, \ldots, x_D) = \prod_{i=1}^{D} p(x_i \mid pa(x_i)), \]

where \(pa(x) \) denotes the parental variables of \(x \).
A belief network specifies a distribution of the form

\[p(x_1, \ldots, x_D) = \prod_{i=1}^{D} p(x_i \mid pa(x_i)), \]

where \(pa(x) \) denotes the parental variables of \(x \).

- **No cycles allowed!** \(\Rightarrow \) Directed uncyclic graph (DAG)
Belief networks specify a distribution of the form

\[p(x_1, \ldots, x_D) = \prod_{i=1}^{D} p(x_i \mid pa(x_i)), \]

where \(pa(x) \) denotes the parent variables of \(x \).

- No cycles allowed! \(\Rightarrow \) Directed uncyclic graph (DAG)

Quiz: What if the graph would have cycles?
A belief network specifies a distribution of the form

\[p(x_1, \ldots, x_D) = \prod_{i=1}^{D} p(x_i \mid pa(x_i)), \]

where \(pa(x) \) denotes the parental variables of \(x \)

- No cycles allowed! \(\Rightarrow \) Directed uncyclic graph (DAG)

Quiz: What if the graph would have cycles? Product is not a valid probability distribution!
A belief network specifies a distribution of the form

\[p(x_1, \ldots, x_k) = \prod_{i=1}^{k} p(x_i \mid \text{pa}(x_i)) \]

For a distribution specified by a Bayesian network, it is easy to *generate samples*:

- Bring random variables into an order, \(i_1, \ldots, i_k \), such that every parent occurs before its children.
- For \(j = 1, \ldots, k \): sample a value for \(x_{i_j} \) according to \(p(x_{i_j} \mid \text{pa}(x_{i_j})) \)
Belief Networks

Real World Examples

Conditional Independence

Belief Networks

A belief network specifies a distribution of the form

\[p(x_1, \ldots, x_k) = \prod_{i=1}^{k} p(x_i \mid \text{pa}(x_i)) \]

For a distribution specified by a Bayesian network, it is easy to *generate samples*:

Sampling

- bring random variables into an order, \(i_1, \ldots, i_k \), such that every parent occurs before its children
- for \(j = 1, \ldots, k \):
 - sample a value for \(x_{i_j} \) according to \(p(x_{i_j} \mid \text{pa}(x_{i_j})) \)

Quiz: What if the graph has cycles?

No such global order anymore!
Sampling from a Bayesian network

A belief network specifies a distribution of the form

\[p(x_1, \ldots, x_k) = \prod_{i=1}^{k} p(x_i \mid \text{pa}(x_i)) \]

For a distribution specified by a Bayesian network, it is easy to *generate samples*:

Sampling

- bring random variables into an order, \(i_1, \ldots, i_k \), such that every parent occurs before its children
- for \(j = 1, \ldots, k \):
 - sample a value for \(x_{i_j} \) according to \(p(x_{i_j} \mid \text{pa}(x_{i_j})) \)

Quiz: What if the graph has cycles? No such global order anymore!
Example: Image generation with PixelCNNs [Van den Oord et al, "Pixel Recurrent Neural Networks", ICML 2016]

Let $p(x_1, \ldots, x_{n^2})$ be the distribution of $n \times n$ (natural) images

- very complex (high-dimensional, multi-modal, long-range dependencies between pixels, \ldots)
- no good parametric models known
Example: Image generation with PixelCNNs [Van den Oord et al, "Pixel Recurrent Neural Networks", ICML 2016]

Let $p(x_1, \ldots, x_{n^2})$ be the distribution of $n \times n$ (natural) images

- very complex (high-dimensional, multi-modal, long-range dependencies between pixels, \ldots)
- no good parametric models known

Factorize

$$p(x_1, \ldots, x_{n^2}) = \prod_{i=1}^{n^2} p(x_i | x_1, \ldots, x_{i-1})$$
Belief Networks

Real World Examples

Conditional Independence

Example: Image generation with PixelCNNs [Van den Oord et al, "Pixel Recurrent Neural Networks", ICML 2016]

Let \(p(x_1, \ldots, x_{n^2}) \) be the distribution of \(n \times n \) (natural) images

- very complex (high-dimensional, multi-modal, long-range dependencies between pixels, \ldots)
- no good parametric models known

Factorize

\[
p(x_1, \ldots, x_{n^2}) = \prod_{i=1}^{n^2} p(x_i|x_1, \ldots, x_{i-1})
\]
Let \(p(x_1, \ldots, x_{n^2}) \) be the distribution of \(n \times n \) (natural) images

- very complex (high-dimensional, multi-modal, long-range dependencies between pixels, \ldots)
- no good parametric models known

Factorize

\[
p(x_1, \ldots, x_{n^2}) = \prod_{i=1}^{n^2} p(x_i | x_1, \ldots, x_{i-1})
\]

For each factor in the product, learn an artificial neural network (later \ldots)
Example: Image generation with PixelCNNs [Van den Oord et al, "Pixel Recurrent Neural Networks", ICML 2016]

We can generate new images by sampling (pixel-by-pixel) from $p(x_1, \ldots, x_{n^2})$.
Example: Image generation with PixelCNNs [Van den Oord et al, "Pixel Recurrent Neural Networks", ICML 2016]

We can generate new images by sampling (pixel-by-pixel) from $p(x_1, \ldots, x_{n^2})$.

Images: [Van den Oord et al, "Pixel Recurrent Neural Networks", ICML 2016]
Example: Image generation with PixelCNNs [Van den Oord et al, "Pixel Recurrent Neural Networks", ICML 2016]

We can generate new images by sampling (pixel-by-pixel) from $p(x_1, \ldots, x_{n^2})$.

Images: [Van den Oord et al, "Pixel Recurrent Neural Networks", ICML 2016]
We can generate new images by sampling (pixel-by-pixel) from $p(x_1, \ldots, x_{n^2})$. We can also sample, conditioned on some of the pixels: $p(x_i, \ldots, x_{n^2} | x_1, \ldots, x_{i-1})$.

Images: [Van den Oord et al, "Pixel Recurrent Neural Networks", ICML 2016]
Example: Image generation with PixelCNNs [Van den Oord et al, "Pixel Recurrent Neural Networks", ICML 2016]

We can generate new images by sampling (pixel-by-pixel) from $p(x_1, \ldots, x_{n^2})$.
We can also sample, conditioned on some of the pixels: $p(x_i, \ldots, x_{n^2} | x_1, \ldots, x_{i-1})$.

Currently (i.e. as of December 2016), one of the state-of-the-art method for image generation.
Example: Time-Series

A time-series is an ordered sequence of (discrete or continuous) random variables

\[X_{a:b} = (X_a, X_{a+1}, \ldots, X_b) \quad \text{for } a, b \in \mathbb{Z} \]

so that one can consider the ‘past’ and ‘future’ in the sequence.

Finance. Stock prices: identify anomalies, predict future behavior.

Climate research. Earth temperature, gas concentrations: analyze patterns, make forecasts.

Biology. DNA sequences: understand them, fill in gaps, cluster them, detect patterns.

Surveillance. video stream: detect anomalies
Markov Models

For timeseries data \(v_1, \ldots, v_T \), we need a model \(p(v_{1:T}) \). For causal consistency, it is meaningful to consider the decomposition

\[
p(v_{1:T}) = \prod_{t=1}^{T} p(v_t|v_{1:t-1})
\]

with the convention \(p(v_{t}|v_{1:t-1}) = p(v_1) \) for \(t = 1 \).

Independence assumptions. It is often natural to assume that the influence of the immediate past is more relevant than the remote past and in Markov models only a limited number of previous observations are required to predict the future.
Markov Chain

Only the recent past is relevant:

\[p(v_t|v_1, \ldots, v_{t-1}) = p(v_t|v_{t-L}, \ldots, v_{t-1}) \]

where \(L \geq 1 \) is the order of the Markov chain.

first order Markov chain \((L = 1)\)

second order Markov chain \((L = 2)\)

We call a Markov chain stationary if the transitions \(p(v_t = s|v_{(t-L):(t-1)} = S) = f(s, S) \) are time-independent (‘homogeneous’). Otherwise it is called non-stationary (‘inhomogeneous’).
Examples of Markov chains

- backgammon: which positions can be reached next depends on the current position, not on earlier positions
- random walks:
 - a (very drunk) person walks around; each step is in a random direction
 - start with any graph; at each step, flip a random edge from present to absent or vice versa
- genetic drift: for clonal species, the DNA of the offspring depends only on the parent, not the grandparent
- trajectory of a constant speed moving object: position at previous time point is not enough, but the positions at two time points (as it can derive the speed from it)

Examples of Non-Markov chains

- German text: the probability of the next word can depend on arbitrarily long ago ones
- elephant behavior (because they have such good memories ;-)
Stationary Markov chains

A stationary Markov chains with finite state space, $\mathcal{X}_t = \{1, \ldots, K\}$, is described by

- initial distribution $a_i = p(x_1 = i)$,
- transition matrix: $A_{i',i} = p(x_{t+1} = i' | x_t = i) \in \mathbb{R}^{K \times K}$.
Stationary Markov chains

A stationary Markov chains with finite state space, $\mathcal{X}_t = \{1, \ldots, K\}$, is described by

- initial distribution $a_i = p(x_1 = i)$,
- transition matrix: $A_{i',i} = p(x_{t+1} = i' | x_t = i) \in \mathbb{R}^{K \times K}$.

We can visualize the transitions probabilities as a state diagram:
Stationary Markov chains

A stationary Markov chains with finite state space, $\mathcal{X}_t = \{1, \ldots, K\}$, is described by

- initial distribution $a_i = p(x_1 = i)$,
- transition matrix: $A_{i',i} = p(x_{t+1} = i'|x_t = i) \in \mathbb{R}^{K \times K}$.

We can visualize the transitions probabilities as a state diagram:

Beware: this is a common illustration, but not the graph of a Bayesian network.
Mixture of Markov models

The transitions of the Markov chain depend on a (discrete) variable $h \in \{1, \ldots, K\}$.

Example: Mixture of first order Markov chains

$$p(v_1:T, h) = p(v_1|h)p(v_2|v_1, h)p(v_3|v_2, h) \ldots p(v_T|v_{T-1}, h)p(h)$$

- for any value of h, this is an ordinary Markov chain
- h is random → a set of samples will be a mixture of different Markov chains
- useful model, e.g., for sequence clustering (h is the cluster identity)
Example: Mixture of first order Markov chains

Example: \(h \in \{\text{Monday}, \text{Tuesday}, \ldots, \text{Sunday}\} \)

Different transition probabilities on each day of the week.
Example: Hidden Markov model

- joint distribution over 2T variables: $p(h_1, \ldots, h_T, x_1, \ldots, x_T)$
- h_t form a Markov chain, each x_t depends only on the corresponding h_t

- interpret: h_t is a state (of an object) at time $t = 1, \ldots, T$, e.g. a position
- interpret: x_t is an observations depending only the state, e.g. radar image
Hidden Markov model (HMM)

Example

- $h_t \in \{\text{sun, rain, snow}\}$: current weather
- $v_t \in \{\text{jogging, not jogging}\}$: my activity

Example

- $h_t \in \{\text{eat, sleep, work}\}$: my states
- $v_t \in \mathbb{R}$: my blood pressure
Hidden Markov model (HMM)

\[p(h_1:T, v_1:T) = p(v_1|h_1)p(h_1) \prod_{t=2}^{T} p(v_t|h_t)p(h_t|h_{t-1}) \]

Most common: stationary HMM with discrete states \(h_t \in \{1, \ldots, H\} \):

Transition Distribution. \(p(h_t|h_{t-1}) \) is defined by

- initial distribution \(a_i = p(h_1 = i) \),
- transition matrix: \(A_{i',i} = p(h_{t+1} = i'|h_t = i) \in \mathbb{R}^{H \times H} \).

Emission Distribution. \(p(v_t|h_t) \)

- for discrete states, \(v_t \in \{1, \ldots, V\} \), matrix \(B_{i,j} = p(v_t = i|h_t = j) \in \mathbb{R}^{V \times H} \)
- for continuous states, \(h_t \) selects one of \(H \) possible output distributions \(p(v_t|h_t) \).
Very useful for reasoning with temporally changing data:

Model allows modeling dynamic processes and (efficiently) answering questions, such as

- **Filtering** (Inferring the present) \(p(h_t|v_{1:t}) \)
- **Prediction** (Inferring the future) \(p(h_t|v_{1:s}) \) for \(t > s \)
- **Smoothing** (Inferring the past) \(p(h_t|v_{1:u}) \) for \(t < u \)
- Predicting future observations \(p(v_t|v_{1:s}) \) for \(t > s \)
- Likelihood \(p(v_{1:T}) \)
- Find most likely hidden path \(\text{argmax}_{h_{1:T}} p(h_{1:T}|v_{1:T}) \)
A Generative Model of a Text Document: bag of words

- text document consisting of \(N \) English words
- \(d \): document id
- \(w_1, \ldots, w_N \in \{\text{all English words}\} \): words

Model reflects how we imagine a corpus of documents could be generated:

- choose a document ID according to \(p(d) \)
- for \(i = 1, \ldots, N \):
 - choose a word \(w_i \) according to \(p(w|d) \)
 (each document has its own preferred or non-preferred words)
A Generative Model of a Text Document: bag of words

- text document consisting of N English words
- d: document id
- $w_1, \ldots, w_N \in \{\text{all English words}\}$: words

Model reflects how we imagine a corpus of documents could be generated:

- choose an document ID according to $p(d)$
- for $i = 1, \ldots, N$:
 - choose a word w_i according to $p(w|d)$
 (each document has its own preferred or non-preferred words)

Knowing $p(d, w_1, \ldots, w_N)$ can we generate text documents by random sampling.

Not a particularly "realistic", though...

- e.g., word order does not matter
A Generative Model of a Text Document: mixture of bag of words

- text document consisting of N English words
- d: document id
- $z \in \{1, \ldots, T\}$: topic id
- $w_1, \ldots, w_N \in \{\text{all English words}\}$: words

Generative model:

- choose a document ID according to $p(d)$
- pick a topic according to $p(z|d)$
- for $i = 1, \ldots, N$:
 - choose a word w_i according to $p(w|z)$
 (each topic has its own preferred or non-preferred words)

Can be used, e.g., to cluster documents:

- estimate $p(z|d)$ and $p(w|z)$ from the data
- for each document, find the most likely topic: $z^* = \arg\max_z p(z|d)$
- put documents into the same cluster if they have the same topic
A Generative Model of a Text Document: probabilistic latent semantic analysis

- text document consisting of N English words
- d: document id
- $w_1, \ldots, w_N \in \{\text{all English words}\}$: words
- $z_1, \ldots, z_N \in \{1, \ldots, K\}$: ”topic” indicator. In which context/topic was this word used?

Generative model:

- choose an document ID according to $p(d)$
- for $i = 1, \ldots, N$:
 - choose a topic according to $p(z|d)$
 (some documents prefer some topics z_i, other prefer others)
 - choose a word w_i according to $p(w|z_i)$
 (each topics has its own preferred or non-preferred words)
A Generative Model of a Text Document: probabilistic latent semantic analysis

- text document consisting of N English words
- d: document id
- $w_1, \ldots, w_N \in \{\text{all English words}\}$: words
- $z_1, \ldots, z_N \in \{1, \ldots, K\}$: "topic" indicator. In which context/topic was this word used?

Generative model:
- choose an document ID according to $p(d)$
- for $i = 1, \ldots, N$:
 - choose a topic according to $p(z \mid d)$
 (some documents prefer some topics z_i, other prefer others)
 - choose a word w_i according to $p(w \mid z_i)$
 (each topics has its own preferred or non-preferred words)

Also a generative model, and a bit more interesting.
A Generative Model of A Text Corpus

- text corpus: M documents
Plate Notation

For notational convenience, repeated elements are put into a box with a number in the corner indicating the number of repeats.
Plate Notation

For notational convenience, repeated elements are put into a box with a number in the corner indicating the number of repeats.

\[\begin{array}{c}
\circ \rightarrow \circ \\
\circ \rightarrow \circ \\
\circ \rightarrow \circ
\end{array} \]

becomes

\[\begin{array}{c}
\circ \rightarrow \circ \\
\circ \rightarrow \circ \\
\circ \rightarrow \circ
\end{array} \]

Probabilistic Latent Semantic Analysis (PLSA) [T. Hofmann, NIPS 2000]

Probabilistic

From $p(\text{documentID}, \text{topics}, \text{words})$ we can infer:

Most likely words per topic:

\[
p(\text{words}|\text{topics}=1,2,3,4)
\]

<table>
<thead>
<tr>
<th>Topic 1</th>
<th>Topic 2</th>
<th>Topic 3</th>
<th>Topic 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW</td>
<td>MILLION</td>
<td>CHILDREN</td>
<td>SCHOOL</td>
</tr>
<tr>
<td>FILM</td>
<td>TAX</td>
<td>WOMEN</td>
<td>STUDENTS</td>
</tr>
<tr>
<td>SHOW</td>
<td>PROGRAM</td>
<td>PEOPLE</td>
<td>SCHOOLS</td>
</tr>
<tr>
<td>MUSIC</td>
<td>BUDGET</td>
<td>CHILD</td>
<td>EDUCATION</td>
</tr>
<tr>
<td>MOVIE</td>
<td>BILLION</td>
<td>YEARS</td>
<td>TEACHERS</td>
</tr>
<tr>
<td>PLAY</td>
<td>FEDERAL</td>
<td>FAMILIES</td>
<td>HIGH</td>
</tr>
<tr>
<td>MUSICAL</td>
<td>YEAR</td>
<td>WORK</td>
<td>PUBLIC</td>
</tr>
<tr>
<td>BEST</td>
<td>SPENDING</td>
<td>PARENTS</td>
<td>TEACHER</td>
</tr>
<tr>
<td>ACTOR</td>
<td>NEW</td>
<td>SAYS</td>
<td>BENNETT</td>
</tr>
<tr>
<td>FIRST</td>
<td>STATE</td>
<td>FAMILY</td>
<td>MANGAT</td>
</tr>
<tr>
<td>YORK</td>
<td>PLAN</td>
<td>WELFARE</td>
<td>NAMPHY</td>
</tr>
<tr>
<td>OPERA</td>
<td>MONEY</td>
<td>MEN</td>
<td>STATE</td>
</tr>
<tr>
<td>THEATER</td>
<td>PROGRAMS</td>
<td>PERCENT</td>
<td>PRESIDENT</td>
</tr>
<tr>
<td>ACTRESS</td>
<td>GOVERNMENT</td>
<td>CARE</td>
<td>ELEMENTARY</td>
</tr>
<tr>
<td>LOVE</td>
<td>CONGRESS</td>
<td>LIFE</td>
<td>HAITI</td>
</tr>
</tbody>
</table>

Images: [Blei et al, ”Latent Dirichlet Allocation”, JMLR 2004]
From $p(\text{documentID}, \text{topics}, \text{words})$ we can infer:

Most likely words per topic:

$p(\text{words}|\text{topics}=1,2,3,4)$

<table>
<thead>
<tr>
<th>“Arts”</th>
<th>“Budgets”</th>
<th>“Children”</th>
<th>“Education”</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW</td>
<td>MILLION</td>
<td>CHILDREN</td>
<td>SCHOOL</td>
</tr>
<tr>
<td>FILM</td>
<td>TAX</td>
<td>WOMEN</td>
<td>STUDENTS</td>
</tr>
<tr>
<td>SHOW</td>
<td>PROGRAM</td>
<td>PEOPLE</td>
<td>SCHOOLS</td>
</tr>
<tr>
<td>MUSIC</td>
<td>BUDGET</td>
<td>CHILD</td>
<td>EDUCATION</td>
</tr>
<tr>
<td>MOVIE</td>
<td>BILLION</td>
<td>YEARS</td>
<td>TEACHERS</td>
</tr>
<tr>
<td>PLAY</td>
<td>FEDERAL</td>
<td>FAMILIES</td>
<td>HIGH</td>
</tr>
<tr>
<td>MUSICAL</td>
<td>YEAR</td>
<td>WORK</td>
<td>PUBLIC</td>
</tr>
<tr>
<td>BEST</td>
<td>SPENDING</td>
<td>PARENTS</td>
<td>TEACHER</td>
</tr>
<tr>
<td>ACTOR</td>
<td>NEW</td>
<td>SAYS</td>
<td>BENNETT</td>
</tr>
<tr>
<td>FIRST</td>
<td>STATE</td>
<td>FAMILY</td>
<td>MANGAT</td>
</tr>
<tr>
<td>YORK</td>
<td>PLAN</td>
<td>WELFARE</td>
<td>NAMPHY</td>
</tr>
<tr>
<td>OPERA</td>
<td>MONEY</td>
<td>MEN</td>
<td>STATE</td>
</tr>
<tr>
<td>THEATER</td>
<td>PROGRAMS</td>
<td>PERCENT</td>
<td>PRESIDENT</td>
</tr>
<tr>
<td>ACTRESS</td>
<td>GOVERNMENT</td>
<td>CARE</td>
<td>ELEMENTARY</td>
</tr>
<tr>
<td>LOVE</td>
<td>CONGRESS</td>
<td>LIFE</td>
<td>HAITI</td>
</tr>
</tbody>
</table>

Belief Networks

Real World Examples

Conditional Independence

Probabilistic

From $p(\text{documentID, topics, words})$ we can infer:

Most likely words per topic:

$$p(\text{words|topics=1,2,3,4})$$

<table>
<thead>
<tr>
<th>“Arts”</th>
<th>“Budgets”</th>
<th>“Children”</th>
<th>“Education”</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW</td>
<td>MILLION</td>
<td>CHILDREN</td>
<td>SCHOOL</td>
</tr>
<tr>
<td>FILM</td>
<td>TAX</td>
<td>WOMEN</td>
<td>STUDENTS</td>
</tr>
<tr>
<td>SHOW</td>
<td>PROGRAM</td>
<td>PEOPLE</td>
<td>SCHOOLS</td>
</tr>
<tr>
<td>MUSIC</td>
<td>BUDGET</td>
<td>CHILD</td>
<td>EDUCATION</td>
</tr>
<tr>
<td>MOVIE</td>
<td>BILLION</td>
<td>YEARS</td>
<td>TEACHERS</td>
</tr>
<tr>
<td>PLAY</td>
<td>FEDERAL</td>
<td>FAMILIES</td>
<td>HIGH</td>
</tr>
<tr>
<td>MUSICAL</td>
<td>YEAR</td>
<td>WORK</td>
<td>PUBLIC</td>
</tr>
<tr>
<td>BEST</td>
<td>SPENDING</td>
<td>PARENTS</td>
<td>TEACHER</td>
</tr>
<tr>
<td>ACTOR</td>
<td>NEW</td>
<td>SAYS</td>
<td>BENNETT</td>
</tr>
<tr>
<td>FIRST</td>
<td>STATE</td>
<td>FAMILY</td>
<td>MANGAT</td>
</tr>
<tr>
<td>YORK</td>
<td>PLAN</td>
<td>WELFARE</td>
<td>NAMPHY</td>
</tr>
<tr>
<td>OPERA</td>
<td>MONEY</td>
<td>MEN</td>
<td>STATE</td>
</tr>
<tr>
<td>THEATER</td>
<td>PROGRAMS</td>
<td>PERCENT</td>
<td>PRESIDENT</td>
</tr>
<tr>
<td>ACTRESS</td>
<td>GOVERNMENT</td>
<td>CARE</td>
<td>ELEMENTARY</td>
</tr>
<tr>
<td>LOVE</td>
<td>CONGRESS</td>
<td>LIFE</td>
<td>HAITI</td>
</tr>
</tbody>
</table>

Most likely topic per word:

$$p(\text{topics|word = i, documentID = j})$$

Images: [Blei et al, ”Latent Dirichlet Allocation”, JMLR 2004]
Latent Dirichlet Allocation (LDA)

- PLSA is a probabilistic model of exactly M text document
- LDA is a more flexible variant that allows generating new documents
Latent Dirichlet Allocation (LDA)

- LDA is a topic model: each word is generated according to a word-topic distribution.
- author-topic-model: allow for different authors, each has a word-topic distribution.

allows questions such as "Who wrote this paragraph?" in an article

Neural Networks for Text Generation

For generating text, Neural Networks can be used as well:

- can be seen as directed, non-Markov, Bayesian network that estimates
 - word sequences, \(p(w_t | w_1, \ldots, w_{t-1}) \)
 - character sequences, \(p(c_t | c_1, \ldots, c_{t-1}) \)

(neural network illustration, not a Bayesian network graph)
Generating Shakespeare, character by character

KING LEAR:

O, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods
With his heads, and my hands are wonder’d at the deeds,
So drop upon your lordship’s head, and your opinion
Shall be against your honour.
Belief Networks

Real World Examples

Conditional Independence

Neural Networks for Text Generation

Generating Shakespeare, character by character

KING LEAR:

O, if you were a feeble sight, the courtesy of your law,

Your sight and several breath, will wear the gods

With his heads, and my hands are wonder’d at the deeds,

So drop upon your lordship’s head, and your opinion

Shall be against your honour.

Generating Obama speeches

Good afternoon. God bless you.

The United States will step up to the cost of a new challenges of the American people that will share the fact that we created the problem. They were attacked and so that they have to say that all the task of the final days of war that I will not be able to get this done.
Different factorizations

Which graph should we use for given random variables?

- graph specifies factorization: \(p(x_1, \ldots, x_D) = \prod_{i=1}^{D} p(x_i \mid pa(x_i)) \)
- Any distribution can be written as such a product (in many ways):
- Two factorizations of four variables:

\[
\begin{align*}
p(x_1, x_2, x_3, x_4) &= p(x_1 \mid x_2, x_3, x_4)p(x_2 \mid x_3, x_4)p(x_3 \mid x_4)p(x_4) \\
p(x_1, x_2, x_3, x_4) &= p(x_3 \mid x_1, x_2, x_4)p(x_4 \mid x_1, x_2)p(x_1 \mid x_2)p(x_2)
\end{align*}
\]

- Which factorization we use matters if we know (conditional) independences
Belief Networks

- Structure of the DAG corresponds to a set of conditional independence assumptions
 - need to specify all $p(x \mid pa(x))$
 - which parents are sufficient to get the right joint distribution?

- Note: it is not true that non-parental variables have no influence!

- Example: in distribution

$$p(x_1, x_2, x_3) = p(x_1)p(x_2 \mid x_3)p(x_3 \mid x_1)$$

we have

$$p(x_3 \mid x_1, x_2) \neq p(x_3 \mid x_1)$$

x_2 matters for x_3, even though they are not directly connected.
Belief Networks

▶ Structure of the DAG corresponds to a set of conditional independence assumptions
 ▶ need to specify all $p(x | pa(x))$
 ▶ which parents are sufficient to get the right joint distribution?

▶ Note: it is not true that non-parental variables have no influence!

▶ Example: in distribution

$$p(x_1, x_2, x_3) = p(x_1)p(x_2 | x_3)p(x_3 | x_1)$$

we have

$$p(x_3 | x_1, x_2) \neq p(x_3 | x_1)$$

x_2 matters for x_3, even though they are not directly connected.

Rule of thumb: if there is a connection (undirected path) there is some form of dependence.
Conditional Independence

- Important task:
 - given graph, read off conditional independence statements

\[
\begin{align*}
\text{are } x_1 \text{ and } x_2 \text{ conditionally independent given } x_4? \\
\text{Yes.} \quad p(x_1, x_2, x_3, x_4) &= p(x_1 | x_4) p(x_2 | x_3, x_4) p(x_3) p(x_4) \\
&= \sum_{x_3} p(x_1, x_2, x_3, x_4) \sum_{x_1, x_2, x_3} p(x_1 | x_4) p(x_2 | x_3, x_4) p(x_3) p(x_4) \\
&= p(x_4) p(x_1 | x_4) \sum_{x_2} p(x_2) = p(x_4) p(x_1 | x_4) \\
\end{align*}
\]

\[
\begin{align*}
\text{are } x_1 \text{ and } x_2 \text{ conditionally independent given } x_3? \\
\text{No.} \quad p(x_1, x_2) &= \sum_{x_3, x_4} p(x_1, x_2, x_3, x_4) \\
&= \sum_{x_3, x_4} p(x_1 | x_4) p(x_2 | x_3, x_4) p(x_3) p(x_4) \\
&= \sum_{x_3} \left(p(x_1 | x_4) p(x_2 | x_3, x_4) p(x_3) p(x_4) \right) \\
&= p(x_4) p(x_1 | x_4) \sum_{x_2} p(x_2) = p(x_4) p(x_1 | x_4) \\
\end{align*}
\]
Conditional Independence

- Important task:
 - given graph, read off conditional independence statements

- Question:

\[
\begin{align*}
\Pr(x_1, x_2, x_3, x_4) &= \Pr(x_1 | x_4) \cdot \Pr(x_2 | x_3, x_4) \cdot \Pr(x_3) \cdot \Pr(x_4) \\
&= \sum_{x_1, x_2} \Pr(x_1, x_2 | x_4) \cdot \Pr(x_3) \cdot \Pr(x_4) \\
&= \sum_{x_1} \sum_{x_2} \Pr(x_1, x_2 | x_4) \cdot \Pr(x_3) \cdot \Pr(x_4) \\
&= \sum_{x_3} \sum_{x_1} \Pr(x_1 | x_4) \cdot \Pr(x_2 | x_3, x_4) \cdot \Pr(x_3) \cdot \Pr(x_4) \\
&= \Pr(x_4) \cdot \Pr(x_1 | x_4) \cdot \Pr(x_2 | x_4) \\
&= \sum_{x_1} \Pr(x_1 | x_4) \cdot \Pr(x_2 | x_4) \\
&= \Pr(x_1) \cdot \Pr(x_2 | x_4)
\end{align*}
\]

- Question:

\[
\begin{align*}
\text{are } x_1 \text{ and } x_2 \text{ conditionally independent given } x_4? \\
\text{Yes.}
\end{align*}
\]
Conditional Independence

- Important task:
 - given graph, read off conditional independence statements

- Question:
 - are \(x_1 \) and \(x_2 \) conditionally independent given \(x_4 \)?
Conditional Independence

Important task:
- given graph, read off conditional independence statements

Question:
- are x_1 and x_2 conditionally independent given x_4?

Yes.

\begin{align*}
p(x_1, x_2, x_3, x_4) &= p(x_1 | x_4) p(x_2 | x_3, x_4) p(x_3) p(x_4) \\
p(x_1, x_2 | x_4) &= \frac{p(x_1, x_2, x_4)}{p(x_4)} = \frac{\sum_{x_3} p(x_1, x_2, x_3, x_4)}{\sum_{x_1, x_2, x_3} p(x_1, x_2, x_3, x_4)} = \frac{\sum_{x_3} p(x_1 | x_4) p(x_2 | x_3, x_4) p(x_3) p(x_4)}{\sum_{x_1, x_2, x_3} p(x_1 | x_4) p(x_2 | x_3, x_4) p(x_3) p(x_4)} \\
&= \frac{p(x_4) p(x_1 | x_4) \sum_{x_3} p(x_2, x_3 | x_4)}{p(x_4) \sum_{x_1} p(x_1 | x_4) \sum_{x_2, x_3} p(x_2, x_3 | x_4)} = \frac{p(x_4) p(x_1 | x_4) p(x_2 | x_4)}{p(x_4)} = p(x_1 | x_4) p(x_2 | x_4)
\end{align*}
Conditional Independence

▶ Important task:
 ▶ given graph, read off conditional independence statements

▶ Question:
 ▶ are \(x_1 \) and \(x_2 \) conditionally independent given \(x_3 \)?

\[
p(x_1, x_2, x_3, x_4) = p(x_1|x_4)p(x_2|x_3, x_4)p(x_3)p(x_4)
\]

\[
p(x_1, x_2|x_4) = \frac{p(x_1, x_2, x_4)}{p(x_4)} = \frac{\sum x_3 p(x_1, x_2, x_3, x_4)}{\sum_{x_1, x_2, x_3} p(x_1, x_2, x_3, x_4)} = \frac{\sum x_3 p(x_1|x_4)p(x_2|x_3, x_4)p(x_3)p(x_4)}{\sum_{x_1, x_2, x_3} p(x_1|x_4)p(x_2|x_3, x_4)p(x_3)p(x_4)}
\]

\[
= \frac{p(x_4)p(x_1|x_4) \sum x_3 p(x_2, x_3|x_4)}{p(x_4) \sum x_1 p(x_1|x_4) \sum_{x_2, x_3} p(x_2, x_3|x_4)} = \frac{p(x_4)p(x_1|x_4)p(x_2|x_4)}{p(x_4)} = p(x_1|x_4)p(x_2|x_4)
\]

▶ are \(x_1 \) and \(x_2 \) conditionally independent given \(x_3 \)?

Yes.

▶ are \(x_1 \) and \(x_2 \) conditionally independent given \(x_4 \)?

No.
Conditional Independence

Important task:
▶ given graph, read off conditional independence statements

Question:
▶ are \(x_1\) and \(x_2\) conditionally independent given \(x_4\)? Yes.

\[
p(x_1, x_2, x_3, x_4) = p(x_1 | x_4)p(x_2 | x_3, x_4)p(x_3)p(x_4)
\]

\[
p(x_1, x_2 | x_4) = \frac{p(x_1, x_2, x_4)}{p(x_4)} = \frac{\sum x_3 p(x_1, x_2, x_3, x_4)}{\sum x_1, x_2, x_3 p(x_1, x_2, x_3, x_4)} = \frac{\sum x_3 p(x_1 | x_4)p(x_2 | x_3, x_4)p(x_3)p(x_4)}{\sum x_1, x_2, x_3 p(x_1 | x_4)p(x_2 | x_3, x_4)p(x_3)p(x_4)}
\]

\[
= \frac{p(x_4)p(x_1 | x_4)\sum x_3 p(x_2 | x_3 | x_4)}{p(x_4)\sum x_1 p(x_1 | x_4)\sum x_2, x_3 p(x_2, x_3 | x_4)} = \frac{p(x_4)p(x_1 | x_4)p(x_2 | x_4)}{p(x_4)} = p(x_1 | x_4)p(x_2 | x_4)
\]

▶ are \(x_1\) and \(x_2\) conditionally independent given \(x_3\)? No.
Is there a way to check this just based on the graph?

Simplest case: three variables. Are x_1 and x_2 conditionally independent given x_3?
Conditional Independences

Is there a way to check this just based on the graph?

Simplest case: three variables. Are x_1 and x_2 conditionally independent given x_3?

- Easy: yes
- ...and anything else with $x_1 \rightarrow x_2$
Conditional Independences

Is there a way to check this just based on the graph?

Simplest case: three variables. Are \(x_1 \) and \(x_2 \) conditionally independent given \(x_3 \)?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
</tr>
</tbody>
</table>

easy: yes

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
</tr>
<tr>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
</tr>
</tbody>
</table>

easy: no

\[x_1 \rightarrow x_2 \]
Conditional Independences

Is there a way to check this just based on the graph?

Simplest case: three variables. Are \(x_1 \) and \(x_2 \) conditionally independent given \(x_3 \)?

- **easy**: yes
- **interesting cases**
- \(x_1 \rightarrow x_2 \) and anything else with \(x_1 \rightarrow x_2 \) **easy**: no
Conditional Independences

Is there a way to check this just based on the graph?

▶ Interesting cases: indirect connections

![Diagram showing indirect connections](image)

Definition: collision

Given a path from node a to b, a **collider** is a node c for which there are two nodes a, b in the path pointing **towards** c. $(a → c ← b)$
Collider and conditional independence

Collision

Given a path from node a to b, a collider is a node c for which there are two nodes a, b in the path pointing towards c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider?
- $x_1 \perp x_2 \mid x_3$?
Collider and conditional independence

Collision

Given a path from node a to b, a **collider** is a node c for which there are two nodes a, b in the path pointing **towards** c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider? no
- $x_1 \perp x_2 | x_3$?
Collider and conditional independence

Collision

Given a path from node \(a \) to \(b \), a collider is a node \(c \) for which there are two nodes \(a, b \) in the path pointing towards \(c \). \((a \rightarrow c \leftarrow b) \)

- \(x_3 \) a collider? no
- \(x_1 \perp x_2 \mid x_3 \)? yes
Collider and conditional independence

Collision

Given a path from node a to b, a **collider** is a node c for which there are two nodes a, b in the path pointing *towards* c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider ? no
- $x_1 \perp x_2 \mid x_3$? yes

\[
p(x_1, x_2 \mid x_3) = \frac{p(x_1, x_2, x_3)}{p(x_3)}
\]

\[
= \frac{p(x_1 \mid x_3) p(x_2 \mid x_3) p(x_3)}{p(x_3)}
\]
Collider and conditional independence

Collision

Given a path from node a to b, a **collider** is a node c for which there are two nodes a, b in the path pointing **towards** c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider? no
- $x_1 \perp \perp x_2 \mid x_3$? yes

\[
p(x_1, x_2 \mid x_3) = \frac{p(x_1, x_2, x_3)}{p(x_3)}
= p(x_1 \mid x_3)p(x_2 \mid x_3)p(x_3)/p(x_3)
= \]
Collider and conditional independence

Collision

Given a path from node a to b, a collider is a node c for which there are two nodes a, b in the path pointing towards c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider ? no
- $x_1 \perp x_2 \mid x_3$? yes

\[
\begin{align*}
p(x_1, x_2 \mid x_3) &= \frac{p(x_1, x_2, x_3)}{p(x_3)} \\
&= \frac{p(x_1 \mid x_3)p(x_2 \mid x_3)p(x_3)\big/ p(x_3)}{p(x_3)} \\
&= \frac{p(x_2 \mid x_3)p(x_1 \mid x_3)}{p(x_3)}
\end{align*}
\]
Collision

Given a path from node a to b, a collider is a node c for which there are two nodes a, b in the path pointing towards c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider?
- $x_1 \perp x_2 \mid x_3$?
Collision

Given a path from node a to b, a **collider** is a node c for which there are two nodes a, b in the path pointing **towards** c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider? no
- $x_1 \perp \perp x_2 \mid x_3$?
Collision

Given a path from node a to b, a **collider** is a node c for which there are two nodes a, b in the path pointing *towards* c. ($a \to c \leftarrow b$)

- x_3 a collider? no
- $x_1 \perp \perp x_2 \mid x_3$? yes
Collider and conditional independence

Collision

Given a path from node \(a\) to \(b\), a collider is a node \(c\) for which there are two nodes \(a, b\) in the path pointing towards \(c\). (\(a \rightarrow c \leftarrow b\))

- \(x_3\) a collider? no
- \(x_1 \perp x_2 \mid x_3\)? yes

\[
p(x_1, x_2 \mid x_3) = \frac{p(x_1, x_2, x_3)}{p(x_3)}
\]

\[
= \frac{p(x_2 \mid x_3)}{p(x_3)}p(x_1 \mid x_3)
\]

\[
= \frac{p(x_2 \mid x_3)}{p(x_3)}
\]
Collider and conditional independence

Collision

Given a path from node a to b, a **collider** is a node c for which there are two nodes a, b in the path pointing *towards* c. ($a \to c \leftarrow b$)

- x_3 a collider? no
- $x_1 \perp\!\!\!\!\!\!\perp x_2 \mid x_3$? yes

\[
p(x_1, x_2 \mid x_3) = \frac{p(x_1, x_2, x_3)}{p(x_3)} = \frac{p(x_2 \mid x_3)p(x_3 \mid x_1)p(x_1)/p(x_3)}{=}
\]
Collider and conditional independence

Collision

Given a path from node a to b, a collider is a node c for which there are two nodes a, b in the path pointing towards c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider? no
- $x_1 \perp \perp x_2 \mid x_3$? yes

\[
p(x_1, x_2 \mid x_3) = \frac{p(x_1, x_2, x_3)}{p(x_3)} \\
= \frac{p(x_2 \mid x_3)p(x_3 \mid x_1)p(x_1)}{p(x_3)} \\
= \frac{p(x_2 \mid x_3)p(x_1, x_3)}{p(x_3)} \\
= \frac{p(x_2 \mid x_3)}{p(x_3)}\]
Collision

Given a path from node a to b, a collider is a node c for which there are two nodes a, b in the path pointing towards c. $(a \rightarrow c \leftarrow b)$

- x_3 a collider? no
- $x_1 \perp x_2 \mid x_3$? yes

\[
p(x_1, x_2 \mid x_3) = \frac{p(x_1, x_2, x_3)}{p(x_3)}
\]
\[
= \frac{p(x_2 \mid x_3)p(x_3 \mid x_1)p(x_1)}{p(x_3)}
\]
\[
= \frac{p(x_2 \mid x_3)p(x_1, x_3)}{p(x_3)}
\]
\[
= \frac{p(x_2 \mid x_3)p(x_1 \mid x_3)}{p(x_3)}
\]
Collider and conditional independence

Collision

Given a path from node a to b, a **collider** is a node c for which there are two nodes a, b in the path pointing towards c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider?
- $x_1 \perp x_2 \mid x_3$?
Collision

Given a path from node a to b, a collider is a node c for which there are two nodes a, b in the path pointing towards c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider? yes
- $x_1 \perp x_2 | x_3$?
Collider and conditional independence

Collision

Given a path from node a to b, a **collider** is a node c for which there are two nodes a, b in the path pointing towards c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider? yes
- $x_1 \perp x_2 \mid x_3$? no!
Collider and conditional independence

Collision

Given a path from node a to b, a **collider** is a node c for which there are two nodes a, b in the path pointing towards c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider? yes
- $x_1 \perp \perp x_2 \mid x_3$? no!

\[
p(x_1, x_2 \mid x_3) = \frac{p(x_1, x_2, x_3)}{p(x_3)} = \frac{p(x_1)p(x_2)\frac{p(x_3 \mid x_1, x_2)}{p(x_3)}}{p(x_3)} \neq 1 \text{ in general}
\]
Colliders and conditional independence

Given a path from node a to b, a **collider** is a node c for which there are two nodes a, b in the path pointing *towards* c. ($a \rightarrow c \leftarrow b$)

- x_3 a collider? yes
- $x_1 \perp x_2 \mid x_3$? no!

\[
p(x_1, x_2 \mid x_3) = \frac{p(x_1, x_2, x_3)}{p(x_3)}
= \frac{p(x_1)p(x_2)p(x_3 \mid x_1, x_2)}{p(x_3)}
\]

$\neq 1$ in general

For three variables in which two are indirectly, but not directly connected: the two are conditionally independent conditioned on the third, if and only if the conditioned variable is not a collider.
Determining Conditional Independence

- Let \mathcal{X}, \mathcal{Y} and \mathcal{Z} be disjoint sets of random variables.
- There is a general algorithm to check for conditional independence $\mathcal{X} \perp \perp \mathcal{Y} | \mathcal{Z}$ in any belief network, called “d-separation”:

d-separation (the ’d’ is for ’directional’)

For every $x \in \mathcal{X}$, $y \in \mathcal{Y}$ check every undirected path U between x and y. A path is **blocked** if there is a node w on U such that either:

1. w is a collider and neither w nor any of its descendant is in \mathcal{Z}.
2. w is not a collider on U and w is in \mathcal{Z}.

If all such paths are blocked then \mathcal{X} and \mathcal{Y} are d-separated by \mathcal{Z}.

Theorem: If \mathcal{X} and \mathcal{Y} are d-separated by \mathcal{Z}, then $\mathcal{X} \perp \perp \mathcal{Y} | \mathcal{Z}$.
Determining Conditional Independence

- Let \mathcal{X}, \mathcal{Y} and \mathcal{Z} be disjoint sets of random variables
- There is a general algorithm to check for conditional independence $\mathcal{X} \perp \perp \mathcal{Y} \mid \mathcal{Z}$ in any belief network, called “d-separation”:

 d-separation (the ’d’ is for ’directional’)

 For every $x \in \mathcal{X}$, $y \in \mathcal{Y}$ check every undirected path U between x and y. A path is blocked if there is a node w on U such that either:
 1. w is a collider and neither w nor any of its descendant is in \mathcal{Z}

Theorem: If \mathcal{X} and \mathcal{Y} are d-separated by \mathcal{Z}, then $\mathcal{X} \perp \perp \mathcal{Y} \mid \mathcal{Z}$.
Determining Conditional Independence

- Let \mathcal{X}, \mathcal{Y} and \mathcal{Z} be disjoint sets of random variables
- There is a general algorithm to check for conditional independence $\mathcal{X} \perp \mathcal{Y} \mid \mathcal{Z}$ in any belief network, called “d-separation”:

d-separation (the ’d’ is for ’directional’)

For every $x \in \mathcal{X}$, $y \in \mathcal{Y}$ check every undirected path U between x and y. A path is **blocked** if there is a node w on U such that either:

1. w is a collider and neither w nor any of its descendant is in \mathcal{Z}
2. w is not a collider on U and w is in \mathcal{Z}

Theorem: If \mathcal{X} and \mathcal{Y} are d-separated by \mathcal{Z}, then $\mathcal{X} \perp \mathcal{Y} \mid \mathcal{Z}$.
Determining Conditional Independence

- Let \mathcal{X}, \mathcal{Y} and \mathcal{Z} be disjoint sets of random variables.
- There is a general algorithm to check for conditional independence $\mathcal{X} \perp \perp \mathcal{Y} \mid \mathcal{Z}$ in any belief network, called “d-separation”:

d-separation (the ’d’ is for ’directional’)

For every $x \in \mathcal{X}$, $y \in \mathcal{Y}$ check every undirected path U between x and y. A path is **blocked** if there is a node w on U such that either:

1. w is a collider and neither w nor any of its descendant is in \mathcal{Z}
2. w is not a collider on U and w is in \mathcal{Z}

If all such paths are blocked then \mathcal{X} and \mathcal{Y} are **d-separated** by \mathcal{Z}.

Theorem: If \mathcal{X} and \mathcal{Y} are d-separated by \mathcal{Z}, then $\mathcal{X} \perp \perp \mathcal{Y} \mid \mathcal{Z}$.
Determining Conditional Independence

Special case:

The distribution of A conditioned on all other variables depends only on the variables in the “Markov blanket”.

The **Markov blanket** comprises:

- Parents
- Children
- Parents of children
Determining Conditional Independence

Other ways to check conditional independence exist, e.g. a detour via undirected graphs:

Given $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ how to determine whether $\mathcal{X} \perp \perp \mathcal{Y} | \mathcal{Z}$?

1. Let $\mathcal{D} = \{\mathcal{X} \cup \mathcal{Y} \cup \mathcal{Z}\}$
2. Build the Ancestral Graph
 - Remove all nodes that are $\notin \mathcal{D}$ and not an ancestor of a node in \mathcal{D}
 - Also remove all edges in or out of such nodes
3. Moralisation
 - Connect parents with common child
 - Remove directions
4. Separation
 - Remove links neighbouring \mathcal{Z}
 - If no path links a node in \mathcal{X} to a node in $\mathcal{Y} \Rightarrow \mathcal{X} \perp \perp \mathcal{Y} | \mathcal{Z}$
Definition: Markov equivalence (for directed and undirected graphs)

Markov equivalence

Two graphs are **Markov equivalent** if they represent the same set of conditional independence statements.
Definition: Markov equivalence (for directed and undirected graphs)

Markov equivalence

Two graphs are **Markov equivalent** if they represent the same set of conditional independence statements.

Skeleton

Graph resulting when removing all arrows of edges
Definition: Markov equivalence (for directed and undirected graphs)

Markov equivalence

Two graphs are **Markov equivalent** if they represent the same set of conditional independence statements.

Skeleton

Graph resulting when removing all arrows of edges

Immorality

Two or more parents of a child with no connection between them
Definition: Markov equivalence (for directed and undirected graphs)

Markov equivalence
Two graphs are Markov equivalent if they represent the same set of conditional independence statements.

Skeleton
Graph resulting when removing all arrows of edges

Immorality
Two or more parents of a child with no connection between them

Theorem: Two graphs are Markov equivalent if and only if they have the same skeleton and same set of immoralities.
Three variable graphs revisited

- (a, b, c, d) have the same skeleton, (e) and (f) have different skeletons
Three variable graphs revisited

- (a, b, c, d) have the same skeleton, (e) and (f) have different skeletons.
 - ⇒ (e) and (f) are not equivalent to any of the others or each other.
Three variable graphs revisited

- (a, b, c, d) have the same skeleton, (e) and (f) have different skeletons
 \[\Rightarrow \] (e) and (f) are not equivalent to any of the others or each other
- (b, c, d) have no immoralities, (a) has immorality \((x_1, x_2)\)
Three variable graphs revisited

- (a, b, c, d) have the same skeleton, (e) and (f) have different skeletons
 \[\rightarrow \] (e) and (f) are not equivalent to any of the others or each other

- (b, c, d) have no immoralities, (a) has immorality \((x_1, x_2)\)
 \[\rightarrow \] (b, c, d) are equivalent to each other, (a) is not equivalent to any of the others