1 The treewidth of a graph

A crucial property to identify if probabilistic inference in a graphical model can be done efficiently is the *treewidth* of the underlying graph.

Definition 1. (see Wikipedia: https://en.wikipedia.org/wiki/Chordal_graph)

A graph is called *chordal*, if any cycle in it that consists of four or more vertices has a *chord*, i.e. there exists an edge that is not part of the cycle but connects two vertices of the cycle.

Definition 2. (see Wikipedia: https://en.wikipedia.org/wiki/Chordal_completion)

A *chordal completion* of a graph is a chordal graph that has the same vertex set and contains at least all edges of the original graph. Note: in general, graphs can have many different chordal completions.

Definition 3. (see Wikipedia: https://en.wikipedia.org/wiki/Treewidth)

The *treewidth* of a chordal graph is the size of its largest clique minus 1. The *treewidth* of a (potentially non-chordal) graph is the smallest treewidth of any of its chordal completions.

For each the following graphs 1)–7),

a) determine if it is chordal,

b) if not, construct a chordal completion,

c) determine its treewidth.

Hint for 1h): The big outer cycle has no chord.

If you really can’t find the solution, there’s a hint at the bottom of the page.
2 Factor Graphs

Assume you are given eight binary-valued random variables, \(X_1, \ldots, X_8 \). Construct factor graphs for the following probability distributions (with \(x = (x_1, \ldots, x_8) \)), such that their underlying graphs have minimal treewidth.

a) \(p(x) \propto e^{\text{number of 1s in } x} \)

b) \(p(x) \propto e^{\text{number of (0–1) transitions in } x_1, \ldots, x_8} \)

c) \(p(x) \propto e^{\text{number of (0–1–0) transitions in } x_1, \ldots, x_8} \)

d) \(p(x) \propto e^{\text{number of (1–0–1) combinations between any three distinct entries in } x} \)

e) \(p(x) = \begin{cases} 1 & \text{if } x = (0,0,\ldots,0) \\ 0 & \text{otherwise} \end{cases} \)

f) \(p(x) = \begin{cases} \frac{1}{2} & \text{if } x = (1,1,\ldots,1) \\ \frac{1}{50} & \text{otherwise} \end{cases} \)

g) \(p(x) \propto e^{\text{parity of } x} \)

Could you do better, if you introduced additional (latent) random variables?

3 Marginal Inference

Assume you are given four binary-valued random variables, \(X_1, \ldots, X_4 \), and a distribution \(p(x_1, x_2, x_3, x_4) \propto \phi_1(x_1, x_2) \phi_2(x_2, x_3) \phi_3(x_3, x_4) \) with factors \(\phi_i(x_i, x_{i+1}) = \begin{cases} 3 & \text{if } x_i = 0 \text{ and } x_{i+1} = 1 \\ 1 & \text{otherwise} \end{cases} \) for \(i = 1, \ldots, 3 \).

Compute (on paper!):

a) the normalizing constant

b) the probability \(p(x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0) \)

c) the marginal probability \(p(x_1 = 0) \)

d) \(\text{corr}(X_1, X_2) \)

e) the marginal probability \(p(x_1 = 0, x_4 = 0) \)

In each case, perform the computation in two ways: once naively, and once using belief propagation where possible (note: e) might require some thought for this). What is more efficient? How would this change f) for a larger number of variables, g) for variables with more states?

4 Maximum Entropy Distribution

Complete the proof we skipped in the lecture:

For samples \(z^1, \ldots, z^N \) and feature functions \(\phi_i : Z \to \mathbb{R} \) for \(i = 1, \ldots, d \), define \(\mu_i := \sum_{n=1}^{N} \phi_i(z_i) \).

Show for finite \(Z \): out of all probability distribution, \(p(z) \), that fulfill \(\mathbb{E}_{z \sim p(z)}[\phi(z)] = \mu_i \) for \(i = 1, \ldots, D \), the one with highest entropy has the form

\[p(z) \propto \exp \left(\sum_i \theta_i \phi_i(z) \right) \quad \text{for some values } \theta_1, \ldots, \theta_D \in \mathbb{R}. \]