IST Austria

Machine Learning and
Computer Vision Group



Christoph Lampert Christoph H. Lampert
Professor
IST Austria (Institute of Science and Technology Austria)
Coordinates Address: Am Campus 1, IST Austria, 3400 Klosterneuburg, Austria
Email: chl (at) ist (dot) ac (dot) at
Phone: +43 2243 9000 3101 (but sending me email usually works better)

Biographical sketch
Curriculum vitae
Group News
Breaking News 12/2020 A paper accepted to NeurIPS. Congratulations Paul!
08/2020 A paper accepted to GCPR. Congratulations Vaclav!
07/2020 Niko presented his paper On the Sample Complexity of Adversarial Multi-Source PAC Learning at ICML 2020
06/2020 A paper accepted to ICML. Congratulations Niko!
04/2020 Mary presented her paper Functional vs. parametric equivalence of ReLU networks at (virtual) ICLR.
02/2020 A paper accepted to CVPR. Congratulations Paul!
12/2019 A paper accepted to ICLR. Congratulations Mary!
12/2019 Another paper accepted to WACV. Congratulations Amelie!
12/2019 IST Austria has been approved as ELLIS unit.
09/2019 A paper accepted to WACV. Congratulations Amelie!
09/2019 Asya Pentina (PhD 2016) received an ELLIS Ph.D. award for "outstanding research achievements during the dissertation phase in artificial intelligence and machine learning". Congratulations!
Recent Publications and Presentations 12/2020 NeurIPS 2020. Paul Henderson, Christoph H. Lampert. "Unsupervised object-centric video generation and decomposition in 3D"
08/2020 GCPR 2020. Vaclav Volhejn, Christoph H. Lampert. "Does SGD Implicitly Optimize for Smoothness?"
07/2020 ICML 2020. Nikola Konstantinov, Elias Frantar, Dan Alistarh, Christoph H. Lampert. "On the Sample Complexity of Adversarial Multi-Source PAC Learning".
07/2020 ICML Workshop "Object-Oriented Learning". Titas Anciukevicius, Christoph H. Lampert, Paul Henderson. "Structured Generative Modeling of Images with Object Depths and Locations",
06/2020 CVPR 2020. Paul Henderson, Vagia Tsiminaki, Christoph H. Lampert. "Leveraging 2D Data to Learn Textured 3D Mesh Generation".
04/2020 ICLR 2020. Mary Phuong, Christoph H. Lampert. "Functional vs. parametric equivalence of ReLU networks "
03/2020 WACV 2020. Amelie Royer, Christoph H. Lampert. " Localizing Grouped Instances for Efficient Detection in Low-Resource Scenarios".
03/2020 WACV 2020. Amelie Royer, Christoph H. Lampert. " A Flexible Selection Scheme for Minimum-Effort Transfer Learning".
12/2019 NeurIPS 2019 Workshop "ML with Guarantees". Anastasia Pentina, Christoph H. Lampert. "Multi-source domain adaptation with guarantees".
10/2019 IJCV. Rémy Sun, Christoph H. Lampert. "KS(conf): A Light-Weight Test if a Multiclass Classifier Operates Outside of Its Specifications"
10/2019 IJCV. Paul Henderson, Vittorio Ferrari. Learning Single-Image 3D Reconstruction by Generative Modelling of Shape, Pose and Shading
07/2019 ICCV 2019. Mary Phuong, Christoph H. Lampert. "Distillation-Based Training for Multi-Exit Architectures"
06/2019 ICML 2019 Workshop on Adaptive & Multitask Learning. Alexander Zimin, Christoph H. Lampert. "Tasks Without Borders: A New Approach to Online Multi-Task Learning".
06/2019 ICML 2019. Nikola Konstantinov, Christoph H. Lampert. "Robust Learning from Untrusted Sources".
06/2019 ICML 2019. Mary Phuong, Christoph H. Lampert. "Towards Understanding Knowledge Distillation".
Team News 08/2020 Amelie Royer defended her PhD thesis. Congratulations, Dr Royer!
07/2020 Bernd Prach affiliated with our group. Welcome, Bernd!
01/2020 Alex Peste passed her Qualifying Exam. Congratulations!
09/2018 Alex Zimin defended his PhD thesis "Learning from dependent data". Congratulations, Dr Zimin!
02/2018 Alex Kolesnikov defended his PhD thesis "Weakly-Supervised Segmentation and Unsupervised Modeling of Natural Images". Congratulations, Dr Kolesnikov!
Recent and Upcoming Activities (see CV for a more complete list)
Workshops, Books and Edited Volumes Edited Book: Wie Maschinen Lernen, Springer 2019 (with Kristian Kersting and Constantin Rothkopf)
Workshop: Continuous and Open-Set Learning at CVPR 2017 (with E. Rodner, A. Freytag, T. Boult, J. Denzler)
Edited Volume: Visual Attributes, Springer 2017 (with Rogerio S. Feris and Devi Parikh)
Edited Volume: Advanced Structured Prediction, MIT Press 2015 (with S. Nowozin, P. V. Gehler and J. Jancsary)
Chair Positions and Memberships Associate Editor in Chief for IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
Action Editor for Journal of Machine Learning Research (JMLR)
Editor for International Journal for Computer Vision (IJCV)
Member of the Young Academy of the Austrian Academy of Science
External Talks 28 Sep 2020: Robust Learning from Multiple Sources, Invited Talk at GCPR 2020, online event (video)
17 Jul 2020: Learning Theory for Continual and Meta-Learning, ICML2020 Workshop on Continual Learning, online event
2 July 2020: Learning Theory for Continual and Meta-Learning, Sheffield Machine Learning Seminar (online)
2 Mar 2020: Efficient and Adaptive Models for Visual Scene Analysis, Opening of the CD-Laboratory for Embedded Machine Learning, Vienna
21 Jan 2020: Efficient and Adaptive Models for Visual Scene Analysis, Northern Lights Deep Learning Workshop, Tromso
External Teaching 27 July 2020: Vision and Sport Summer School, Prague, CZ. has to be cancelled!
25 September 2019: IWRSchool Heidelberg "Transfer Learning" (talk slides PDF)
28 November 2018: Vienna Graduate School on Computational Optimization, TU Vienna, AT. "Algorithmic Stability and Generalization"- (talk slides PDF)
22 August 2018: Vision and Sport Summer School, Prague, CZ. "Machine Learning for Computer Vision"- (talk slides PDF exercise data: ZIP)
Teaching at IST Austria Q4 2020/21: "Probabilistic Graphical Models" (advanced course, with Paul Henderson)
Q2 2020/21: "Concentration of Measure" (advanced course, with Jan Maas)
Q1 2020/21: "Statistical Machine Learning" (advanced course)
Q3 2019/20: "Formal Methods for Learned Systems" (seminar)