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1 Generalization Properties of MLSP

We provide the proof of Theorem 1 (Section 3.2) of the original manuscript.

Let Gw(x) := {y ∈ Y : fw(x, y) > 0} for fw(x, y) = 〈w,ψ(x, y)〉. We assume |Y| < r and ‖ψ(x, y)‖ < s for all
(x, y) ∈ X × Y , and λ(Y, y) ≤ Λ for all (Y, y) ∈ P(Y)× Y . For any distribution, Qw, over weight vectors, that can
depend on w, we denote by L(Qw, P ) the expected ∆max-risk for P -distributed data,

L(Qw, P ) = Ew̄∼Qw

{
RP,∆max(Gw̄)

}
= Ew̄∼Qw,(x,Y )∼P

{
∆max(Y,Gw̄(x))

}
. (1)

Theorem 1. With probability at least 1−σ over the sample S of size n, the following inequality holds simultaneously
for all weight vectors w.

L(Qw,D) ≤ 1

n

n∑
i=1

`(xi, Y i, f) +
||w||2

n
+
(s2||w||2 ln(rn/||w||2) + ln n

σ

2(n− 1)

)1/2

(2)

for `(xi, Y i, f) := maxy∈Y
{
λ(Y i, y)Jviyf(xi, y) < 1K

}
, where vi is the binary indicator vector of Y i.

Proof. The argument follows [1, Section 11.6], using the PAC-Bayesian bound

L(Qw, D) ≤ L(Qw, S) +

√
KL(Qw, π) + ln n

σ

2(n− 1)
, (3)

where π denotes a prior distribution on w, which we set as zero-mean Gaussian, π(w) ∝ exp(− 1
2 ||w||

2). We choose
Qw as a Gaussian centered at αw, Qw(w̄) ∝ exp(− 1

2 ||w̄ − αw||
2). Then, the KL divergence between Qw and π is

just α2||w||2/2. Analyzing the sample risk L(Qw, S) can be done for each training instance due to i.i.d. sampling. We
denote by Ȳ i the predicted output for xi with respect to w̄. The proof is complete if we show

Ew̄∼Qw∆max(Y
i, Ȳ i) ≤ `(xi, Y i, fw) +

‖w‖2

n
. (4)

The claim follows then by inserting (4) and the expression for KL(Q,P ) into the PAC bound (3).

To show inequality (4), we use

Ew̄∆max(Y
i, Ȳ i) = Ew̄ max

y

{
λ(Y i, y)Jviyf(xi, y; w̄) ≤ 0K

}
(5)

≤ max
y

{
λ(Y i, y)Jviyf(xi, y, w) < 1K

}
+ Pw̄

{
viyf(xi, y, w) ≥ 1 ∧ viyf(xi, y, w̄) ≤ 0

}
, (6)
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where for the second term in (6) we used λ(Y i, y) ≤ 1.The first term is equivalent to the first term in Equation (4).
The following lemma shows that the second term is bounded by ||w||

2

n .

Lemma 1. For w̄ ∼ Qw with parameter α = (2s2 ln(rn/||w||2))1/2, the implication

viyf(xi, y;w) ≥ 1 ⇒ viyf(xi, y; w̄) > 0 (7)

holds simultaneously for all y ∈ Y with probability at least 1− ||w||2/n.

Proof. For any ε ≥ 0 and any φ with ||φ|| = 1,

Pw̄∼Qw

{
〈(αw − w̄), φ〉 ≥ ε

}
≤ exp(−ε2/2). (8)

Consider a fixed y with viyf(xi, y, w) ≥ 1. Because f(xi, y, w) = 〈w,ψ(xi, y)〉, we can use inequality (8) to bound
the probability that w̄ causes y to be predicted with reverse sign. Writing mi(w) := viyf(xi, y, w) and mi(w̄) :=

viyf(xi, y, w̄) we obtain

Pw̄∼Qw{mi(w̄) ≤ αmi(w)− ε||ψ(xi, y)||} ≤ exp(−ε2/2). (9)

Because of mi(w) ≥ 1 this implies

Pw̄∼Qw

{
mi(w̄) ≤ α− ε||ψ(xi, y)||

}
≤ exp(−ε2/2). (10)

Setting ε = α/||ψ(xi, y)|| and using ‖ψ(xi, y)‖ < s, we obtain

Pw̄∼Qw
{mi(w̄) ≤ 0} ≤ exp(−α2/2s2) =

‖w‖2

rn
, (11)

where the last equality is just the result of setting α to the stated value. The claim of Lemma 1 follows from this by
taking a union bound over Y , because |Y| < r.
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2 Detailed Toy Example

To give a more detailed impression of the difference between P-SSVM, MLSP and SSVM training, we provide the
complete log of training the difference techniques on an ad-hoc toy example consisting of only one training example
with one output label.

Let X = (R2)4 be the set of 4-tuples in R2. For x ∈ X we write x = (x1, . . . , x4) for the vortex coordinates, i.e.
xi ∈ R2 for i = 1, . . . , 4. Let Y = {0, 1}4 be the set of binary labelings of such tuples, which we write as 4-letter
strings. We form a training set with a single example xt = ((0, 0), (0, 1), (1, 0), (1, 1)) with label set Y t = {yt} for
yt = 0001. The joint feature function we form as the center coordinates of the points labels by 0 and 1 respectively
and an additional bias term.

Ψ(x, y) =
( 1

|{i : yi = 0}|
∑
{i:yi=0}

xi,
1

|{i : yi = 1}|
∑
{i:yi=1}

xi, 1
)
,∈ R2×2×1 =̂ R5 (12)

where entries corresponding to empty sums are defined as 0. The following table shows the resulting feature represen-
tations Ψ(xt, y) for y ∈ Y as column vectors.

y 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Ψ(xt, y)


0.50
0.50
0.00
0.00
1.00




0.33
0.33
1.00
1.00
1.00




0.33
0.67
1.00
0.00
1.00




0.00
0.50
1.00
0.50
1.00




0.67
0.33
0.00
1.00
1.00




0.50
0.00
0.50
1.00
1.00




0.50
0.50
0.50
0.50
1.00




0.00
0.00
0.67
0.67
1.00




0.67
0.67
0.00
0.00
1.00




0.50
0.50
0.50
0.50
1.00




0.50
1.00
0.50
0.00
1.00




0.00
1.00
0.67
0.33
1.00




1.00
0.50
0.00
0.50
1.00




1.00
0.00
0.33
0.67
1.00




1.00
1.00
0.33
0.33
1.00




0.00
0.00
0.50
0.50
1.00


As misclassification cost we use λ(Y t, y) := 1 for y = yt and the normalized Hamming distance, λ(Y t, y) :=
1
4

∑
i yi 6= yti , otherwise, see the following table.

y 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
λ(Y t, y) 0.25 1.00 0.50 0.25 0.50 0.25 0.75 0.50 0.50 0.25 0.75 0.50 0.75 0.50 1.00 0.75

Tables 1–3 show in detail the process of training margin-rescaled versions of MLSP, SSVM and P-SSVM with hard
margin (no slack variables) in this situation. The tables are to be read as follows: Each row corresponds to one iteration
of the working set training, starting with an empty working set and w = 0. In each iteration, we list the values of
f(xt, y) = 〈w,Ψ(xt, y)〉 for all y ∈ Y . From this and the values of λ(Y t, y), we identify the most violating contraint
of the current optimization problem. For MLSP and SSVM these correspond to single outputs, which we state in the
column ytviol. For P-SSVM a constraint corresponds to a labels set. The entries of this Y tviol are marked by bold scores
of the corresponding f(xt, y). From ytviol and Y tviol, respectively, we compute the new constraint to be added to the
working set. Re-solving the optimization problem yields a neww, and a new iteration starts. The procedure is repeated
until no violated constraint can be identified anymore.

In the captions, we report the output of multi-label prediction using the learned weight vector on the training example.
For MLSP and P-SSVM this is by construction the correct label set Y t. For SSVM it is not, as the SSVM objective
enforces only the correct ranking of labels, i.e. f(xt, yt) > f(xt, y) for y 6= yt, but does not provide a value where to
threshold. Comparing the training protocols in more details, one sees that MLSP in each iteration only considers the
worst mistake, label, i.e. the label with a score farest from the desired one. For each example, it adds a constraint that
enforces the score of this label to lead to a correct decision. In Table 1, the first pick is the positive label, yt, which
is subsequently guaranteed to lie in the predicted output. In the subsequent iterations, MLSP picks negative labels,
y 6= yt, that were incorrectly assigned high scores. In each case it adds a constraint that force the score of this label
to lie below the margin determined by λ(Y i, y). The algorithm terminates before all labels have been considered in
this way, because the sharing of information through the joint feature map Ψ. It causes the scores of some labels to
be dragged down automatically when constraints for similar labels are added. For example, from iteration 3 to 4, the
score of the label 0100 is reduced sufficiently after a constraint for 0111 was added.

SSVM training proceeds in similar way, but only enforces the correct ordering of label scores relatively to each other.
This is an easier problem, which can be interpreted as the reason why SSVM training converges after fewer iterations.
However, the scoring function f(x, y) learned is not well suited to multi-label prediction. The table also shows that
the bias entry of Ψ(x, y) plays no role in SSVM training. All constraints added have a 0 as their last entry.

P-SSVM forms new constraints for the working set as the sum of feature vectors of all currently mispredicted labels.
The margin it enforces has the size of the sum of the per-label costs. The results are rather large entries in the constraint
matrix (considering that only |Y| = 16 in this example). In later iterations, Y tviol has fewer entries, which leads to the
constraints more similar what MLSP and SSVM use. Note that the weight vector found by P-SSVM in Table 3 is
identical to the one by MLSP, but this is only a coincidence of the example chosen.
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