
ANISOTROPIC GAUSSIAN FILTERING USING FIXED POINT ARITHMETIC

Christoph H. Lampert

German Research Center for

Artificial Intelligence (DFKI)

67663 Kaiserslautern, Germany

christoph.lampert@dfki.de

Oliver Wirjadi

Fraunhofer ITWM

Models and Algorithms in Image Processing

67663 Kaiserslautern, Germany

wirjadi@itwm.fraunhofer.de

ABSTRACT

Gaussian filtering in one, two or three dimensions is among

the most commonly needed tasks in signal and image pro-

cessing. Finite impulse response filters in the time domain

with Gaussian masks are easy to implement in either float-

ing or fixed point arithmetic, because Gaussian kernels are

strictly positive and bounded. But these implementations are

slow for large images or kernels. With the recursive IIR-

filters and FFT-based methods, there are at least two alter-

native methods to perform Gaussian filtering in a faster way,

but so far they are only applicable when floating-point hard-

ware is available. In this paper, a fixed-point implementa-

tion of recursive Gaussian filtering is discussed and applied

to isotropic and anisotropic image filtering by making use of

a non-orthogonal separation scheme of the Gaussian filter.

1. INTRODUCTION

Low-pass smoothing of noisy images is a common initial step

in image processing systems. Due to its simplicity and opti-

mality for additive white noise, Gaussian filters are most fre-

quently used. Typically, isotropic ones are used, but adaptive

anisotropic filters are also established tools for structure pre-

serving smoothing. Implementation of Gaussian convolutions

is straight-forward in the image and Fourier transform (FT)

domains, where usually the latter is considered preferable for

large images and large filter masks.

However, in embedded hardware environments, such as

smart cameras, computing the FT for the whole image is be-

yond the capabilities of the hard- and software. In these cases,

implementations that work solely in the image domain are

necessary. Three recent results in (possibly anisotropic) Gaus-

sian filtering have opened new possibilities for fast implemen-

tations of such filters: Recursive 1D Gaussian filtering [1, 2]

and the separation of 2D [3, 4] and nD [4] anisotropic Gaus-

sian kernels. All of these were developed with CPUs in mind

that are equipped with a floating-point unit (FPU).

In this contribution, we propose a fast implementation of

Gaussian filters with full covariance matrix in arbitrary di-

mension, which is adapted to integer-only CPUs. The fil-

ter loop relies on fixed-point calculations and can therefore

be performed using only integer operations. On platforms

where the compiler can emulate floating-point operations in

software, we use this feature for the initialization of the filter

coefficients, see Section 2.2 for details. It is done only once

per image, and therefore does not cause a significant loss of

performance. If a platform does not support this, the coeffi-

cients can be precomputed and tabularized.

Although all PCs contain FPUs these days, many perspec-

tive targets for integer-based Gaussian filtering exist in the

embedded market:

FPGAs. Field-Programmable Gate Arrays (FPGAs) have at-

tracted increasing attention for speeding up low level

routines in the area of real-time image processing and

computer vision [5]. Although FPGAs can be program-

med to perform floating point operations, one usually

tries to avoid this because it requires more logic gates

than this is the case for integer operations.

GPUs. Modern graphics cards contain very fast and highly

parallel units for fixed-point arithmetic. They can use

Gaussian filters e. g. to smoothly blend textures into

each other. For surfaces that lie rotated in 3D-space,

this requires anisotropic 2D-Gaussian filtering [6].

Mobile devices. An increasing number of embedded devices

can perform image capture and image processing oper-

ations, e. g. mobile phones and PDAs with integrated

digicam [7]. Gaussian denoising is of special impor-

tance there, because the camera quality is low.

2. INTEGER-ONLY GAUSSIAN FILTERING

In this section, we describe how 1D-Gaussian filtering can be

implemented in fixed-point arithmetic. In particular, we study

recursive Gaussian filters which have O(1) runtime complex-

ity per pixel. We show how the 1D-filter can be used for low-

pass filtering of images in arbitrary dimension, isotropically

as well as anisotropically. The result is an integer-only Gaus-

sian filter for images that is a good enough approximation to

replace its floating-point counterpart.

2.1. One-dimensional FIR Gaussian Filtering

Filtering with a one-dimensional Gaussian means convolution

with the Gaussian kernel

g(x;σ2) =
1√

2πσ2
e−

x
2

2σ2 , (1)

where σ2 is the variance parameter. For a discrete signal f [x],
the convolution can be implemented as a finite sum,

F [x] =
K

∑

k=−K

f [x − k]g[k] for all x. (2)

where g[k] is the discrete signal that is derived from sampling

the Gaussian g at integer positions k ∈ Z and F is the filtered

output. g[k] drops to 0 exponentially for k → ±∞, and it is

therefore safe to truncate the originally infinite sum to a finite

one. Typically, K is chosen as ⌈3σ⌉ or ⌈5σ⌉ where ⌈.⌉ means

rounding to next larger integer. The result is called finite im-

pulse response (FIR) Gaussian filter and from the formula it

can be seen that it requires O(K) operations per pixel.

The filter mask g[k] does not depend on x and therefore

has to be calculated only once. A fixed point implementa-

tion of the convolution sum (2) is straight-forward at any ac-

curacy. When all coefficients of g[k] are non-negative and

smaller than 1, problems of overflow do not occur. This is the

case for σ > 1
2π ≈ 0.16, and smaller values for σ are unrea-

sonable, because have a filter mask of only a single point.

2.2. One-dimensional IIR Gaussian Filtering

The disadvantage of the FIR Gaussian filter is that its run-

time depends linearly on σ. For large filter sizes, it therefore

becomes slow. In 1995, Young and van Vliet came up with

an alternative solution [1]. They proposed an infinite impulse

response (IIR) filter that approximates the Gaussian to high

order. Their filter uses a recursive scheme that calculates the

filter output F for a whole line of samples in a two-step pro-

cedure:

w[x] = f [x] +

3
∑

k=1

bkw[x − k] for all x (3)

F [x] = Bw[x] +
3

∑

k=1

bkg[x + k] for all x (4)

w is a buffer of intermediate results, and b1, b2, b3 and B are

filter coefficients that depend on σ, see [2]. By a careful

choice of scale for the other parameters, B can be made 1.

Because the number of operations necessary for each pixel is

independent of σ, the filter has complexity O(1) per pixel.

We implemented Eq. (3) and (4) in integer arithmetic, us-

ing 32 bit integer variables. 21 bits of those were reserved for

the fractional part and 1 bit for the sign. Our choice was mo-

tivated by the fact that we work with [0:255] input data and

the fact that b1, b2 and b3 stay in the range between −3 and

3. Thus, we require a sign bit, 8 + 2 = 10 bits for the integer

part, and the rest of the 32 bits can be used to achieve as high

accuracy as possible. Depending on the targeted hardware,

other setups than a 1:10:21 split are of course possible.

To implement the complete filter, additional constants are

necessary, e. g. to control the boundary behavior. Some of

those increase monotonically with σ and this limits the range

of variance parameters for which our filter is applicable. With

the chosen 1:10:21 split, σ2 should not exceed a value of ap-

proximately 170 to avoid overflows in the computation. Larger

values of σ can be reached by using more bits for the inte-

ger part or by exchanging the optimal boundary treatment by

Triggs and Skida [8] for a simpler method. Further details

about the implementation can be found in the source code

of our reference implementation, which is available from the

homepage of one of the authors1.

2.3. Axis-Aligned Gaussian Filtering

For higher-dimensional signals, e. g. 2D or 3D images, iso-

tropic Gaussian filtering is defined analogously to the 1D-

case, by convolution with the Gaussian kernel of correspond-

ing dimension. It is well known that its n-dimensional Gaus-

sian kernel can be factorized into n one-dimensional Gaus-

sians that are aligned to the coordinate axes:

g(x;σ2) =
1√

2πσ2
e−

||x||2

2σ2 =

n
∏

i=1

g(xi;σ
2). (5)

Here, ||x|| is the length in R
n of the coordinate vector x =

(x1, . . . , xn). Because of Equation (5), the Gaussian convo-

lution integral is separable, and the n-dimensional Gaussian

filter can be calculated as a sequence of n one-dimensional

Gaussian filter steps, one along each of the coordinate axes.

FIR or IIR filters can be used for this, as have been studied in

the previous section.

Equation (5) can be generalized to arbitrary axis-aligned

filtering by allowing different variance parameters σ2
1 , ..., σ2

n

in each direction xi:

g(x; Σ) =
1

(2π)n/2
√

|Σ|
e−

1

2
x

tΣ−1
x =

n
∏

i=1

g(xi;σ
2
i), (6)

where Σ denotes the diagonal matrix of variance parameters.

The slightly more general factorization in (6) is useful for

anisotropic image filtering as well, when the constraint of Σ
being diagonal is dropped. For this, it has to be combined

with a shear operation as explained in the following section.

2.4. Anisotropic Gaussian Filtering

To construct general anisotropic Gaussian filters, we lift the

restriction of the previous section and consider arbitrary posi-

tive definite covariance matrices Σ. The form of the Gaussian

1http://www.iupr.org/∼chl/

function remains the same as in the left-hand side of (6). Such

Gaussians in n dimensions have
n(n+1)

2 degrees of freedom.

n of those are the variance parameters σ2
1 , . . . , σ2

n and the re-

maining parameters can be interpreted as rotation angles for

the filtering directions.

How such an anisotropic Gaussian filter can be computed

with O(1) complexity per pixel was first explained in [3] for

R
2. Our explanation follows [4], where for the general case of

R
n it is shown that anisotropic Gaussian filtering of an image

is equivalent to the following procedure:

• Calculate the Triangular Factorization of Cholesky Type

of the covariance matrix Σ. That is, a decomposition

Σ = V DV t, where D is a diagonal matrix and V is

upper-triangular with unit diagonal.

• Transform the image linearly using the matrix V −1.

Because of the special form that V has, this operation

is a shear.

• Apply axis-aligned Gaussian filtering with covariance

matrix D.

• Shear the image back, i. e. transform it linearly using

the matrix V .

2.4.1. Triangular Factorization

The triangular factorization matrices V and D can be calcu-

lated with elementary operations +,−,×, : from the entries

si,j of Σ. E. g. for 2-dimensional images, we have

v1,1 = 1, v1,2 =
s1,2

s2,2
, v2,1 = 0, v2,2 = 1 (7)

d2
1 = s1,1 −

s2
1,2

s2,2
, r d2

2 = s2,2 (8)

where (vi,j)i,j=1,2 are the entries of the matrix V and d2
1, d

2
2

the diagonal elements of D. A derivation can be found in [3].

For 3D and the general case, see [4].

These operations can easily be executed in fixed point

arithmetic, with the additional advantage that the d2
i values

are always positive and never larger than the entries of Σ. v1,2

can be positive or negative, but unless the Gaussian becomes

very strongly elongated, it is of modulus less than 1.

2.4.2. Forward and Backward Shear

A shear transformation of a 2-dimensional image is given by

O[x, y] = I[x − αy, y]. (9)

I is the input image here, and O is the resulting output. x and

y are the pixel coordinates and α is the shear parameter. For

3-dimensional images, the formula is similar:

O[x, y, z] = I[x + αy + βz, y + γz, z] (10)

If the shear parameters are integer valued, the shear is just

a memory copy operation. However, in our setup the shear co-

efficients, which are derived from the entries of V and V −1,

are not integer-valued, and therefore the expression on the

right hand side points to a location between pixel positions.

There are now two choices: either one rounds the position

to the nearest integer, then the shear is reduced to a pure copy

operation again. Or, one applies interpolation of the image in-

formation, linearly in the 2D case and bilinearly in 3D. This

requires calculation of the fractional parts of the pixel position

and the weighted sum of 2 or 4 neighboring pixels. This can

be done in fixed point arithmetic using an arbitrary number of

precision bits.

3. RESULTS

In the previous sections, we have explained how arbitrary

Gaussian filters can be implemented without using floating-

point calculations in the filter loop. In this section, we show

that the corresponding fixed-point versions are good approx-

imations to their floating-point counterparts and to the true

Gaussian. For this, we tested our implementation using a re-

configurable network camera as an embedded Linux system.

The camera is powered by an ETRAX 100LX 32-bit RISC

CPU at 100 Mhz. Floating point functionality is only avail-

able as emulation at severely reduced execution speed.

3.1. Signal Filtering Accuracy

The floating-point versions of the recursive Gaussian filter are

known to be good approximations of the true Gaussian. A

major concern when using only integer operations for such a

recursive filter is the question whether the multiple executions

of the filter loop Equations (3) and (4) will accumulate round-

ing errors when applied to long filter lines. For that reason,

we performed experiments as in Figure 1, where we applied

the fixed point IIR filter implementation to a synthetic signal

counting 2000 samples. The enlarged detail of the beginning

and end of the signal show that there is no accumulation of

errors. The differences between fixed and floating point im-

plementations in Fig. 1(d) are magnitudes below the actual

signal content, showing that the 1+10+21 split that we chose

guarantees sufficient accuracy.

3.2. Image Filtering Accuracy

For 2D filtering we relied on two applications of the 1D re-

cursive filter, as was outlined in Section 2.3 and 2.4. Figure 2

shows impulse responses of our fixed point implementation

for the isotropic and anisotropic cases. The comparison to the

corresponding true Gaussian functions shows a close approx-

imation. We can therefore conclude that the previous results

on the accuracy of the IIR filter for signal and image process-

ing remain valid for a fixed point implementation.

0 500 1000 1500 2000

0
1

2
8

2
5

6

0
1

2
8

2
5

6

(a) A signal of 2000 samples with additive, independent noise.

0 500 1000 1500 2000

0
1

2
8

2
5

6

0
1

2
8

2
5

6

float

int

(b) The filtered signals using floating and fixed point implementations.

2 4 6 8 10

1
7

2
1

7
6

1
8

0

1992 1994 1996 1998 2000

1
6

7
1

6
8

1
6

9

(c) Details of the figure above, at the beginning and end of the signal.

0 500 1000 1500 2000

−
2

e
−

0
4

0
e

+
0

0
2

e
−

0
4

−
2

e
−

0
4

0
e

+
0

0
2

e
−

0
4

(d) Difference of float and fixed point filter results.

Fig. 1. Fixed vs. floating point IIR filtering (σ = 8.0) applied

to a signal. No accumulation of rounding errors towards the

end of a long filter line can be observed.

4. CONCLUSION

We have presented a method for Gaussian image filtering that

uses only a constant number of integer operations per pixel.

As a main contribution we introduced a fixed point imple-

mentation of a one-dimensional recursive Gaussian filter and

its integration into an anisotropic Gaussian filter setup.

By dispensing with floating-point calculations in the main

filtering loop, the method is suitable e. g. for embedded plat-

forms where floating-point operations are computationally ex-

pensive, because they have to be emulated in software. With

a lookup table of precomputed parameter values, the method

can also work without any floating-point operations, which is

suitable e. g. for GPUs and FPGAs.

Our analysis of the filter’s accuracy showed that an im-

plementation using 32 bit integers is sufficient to give results

that are virtually identical to a floating-point implementation.

It is also possible to reduce the necessary resources by using

−20 −10 0 10 20

−
2

0
−

1
0

0
1

0
2

0

impulse response

Gaussian

−20 −10 0 10 20

−
2

0
−

1
0

0
1

0
2

0

Fig. 2. 2D impulse response of our fixed-point IIR implemen-

tation vs. the true Gaussian function: isotropic (σ2
1 = σ2

2 =
150) and anisotropic (σ2

1 = 100, σ2
2 = 150, φ = 45◦).

fewer fractional bits, but this comes at a sacrifice of accuracy.

5. REFERENCES

[1] Ian T. Young and Lucas J. van Vliet, “Recursive Imple-

mentation of the Gaussian Filter,” Signal Processing, vol.

44, pp. 139–151, 1995.

[2] Ian T. Young, Lucas J. van Vliet, and Michael van Ginkel,

“Recursive Gabor Filtering,” IEEE Transactions on Sig-

nal Processing, vol. 50, no. 11, pp. 2798–2805, 2002.

[3] Jan-Mark Geusebroek, Arnold W. M. Smeulders, and

Joost van de Weijer, “Fast Anisotropic Gauss Filtering,”

IEEE Transaction on Image Processing, vol. 23, no. 8,

pp. 938–943, 2003.

[4] Christoph H. Lampert and Oliver Wirjadi, “An Opti-

mal Non-Orthogonal Separation of the Anisotropic Gaus-

sian Convolution Filter,” Technical Report 82, Fraun-

hofer ITWM, Kaiserslautern, Germany, 2005, submitted

to IEEE Transactions on Image Processing.

[5] Bruce A. Draper, J. Ross Beveridge, A. P. Wim Böhm,

Charles Ross, and Monica Chawathe, “Accelerated Im-

age Processing on FPGAs,” IEEE Transactions on Image

Processing, vol. 12, no. 12, pp. 1543–1551, 2003.

[6] Mario Botsch and Leif Kobbelt, “High-Quality Point-

Based Rendering on Modern GPUs,” in 11th Pa-

cific Conference on Computer Graphics and Applications

(PG’03), 2003, p. 335.

[7] Maurizio Pilu and Stephen Pollard, “A Light-Weight Text

Image Processing Method for Handheld Embedded Cam-

eras,” in Proceedings of the British Machine Vision Con-

ference, September 2002.

[8] Bill Triggs and Michael Sdika, “Boundary Conditions

for Young - van Vliet Recursive Filtering,” To appear in

IEEE Transactions on Signal Processing, 2006.

